

WJEC GCE AS/A LEVEL in GEOGRAPHY

APPROVED BY QUALIFICATIONS WALES

GUIDANCE FOR TEACHING Part 1

Teaching from 2016

This Qualifications Wales regulated qualification is not available to centres in England.

Contents

Introduction	3
Aims of the Guidance for Teaching	4
Assessment Strategy	5
Command Word Glossary	8
Delivering the Specification	10
Summary of Assessment	10
Specialised Concepts	11
Amplification of Content and Learning Plans	12
Changing Landscapes – Coastal Landscapes	12
Changing Landscapes – Glaciated Landscapes	22
Tectonic Hazards	34
Changing Places	42
Fieldwork Opportunities	67
Integrating Skills – Practical Approaches	68

Introduction

The WJEC AS and A level in Geography specification encourages learners to apply geographical knowledge, theory and skills to the world around them. In turn, this will enable learners to develop a critical understanding of the world's people, places and environments in the 21st century. Learners should be able to develop both knowledge and understanding of contemporary geographical concepts, together with transferable skills, that will enable learners to progress to higher education and a range of employment opportunities.

The focus of the specification is to develop an enthusiasm for and competence in geography by using contemporary real-world contexts, from a range of specified spatial scales, and through engagement with and practical application of geographical skills and techniques in the field. This specification draws on both physical and human geography, explores people-environment interactions and encourages development of fieldwork at local level to enable learners to pose enquiry questions.

The specification covers the required subject content at an appropriate level of rigour and challenge for a GCE AS and A level qualification. The content is organised into the required core and a non-core themes as prescribed by the <u>Geography GCE AS and A level subject</u> <u>content July 2014</u>.

The four core themes; knowledge and understanding

- 1) Water and carbon cycles (A2)
- 2) Landscape systems (AS)
- 3) Global systems and global governance (A2)
- 4) Changing place; changing places (AS)

The non-core compulsory theme at AS is Tectonic Hazards. The additional non-core optional themes at A2 allow for rigour and in-depth treatment, and also provide flexibility for teachers to select themes to develop a course of study suited both to their interests and circumstances. The specialised concepts and geographical skills (quantitative and qualitative skills and approaches) are embedded in the core and non-core content.

In addition to this Guidance support is provided in the following ways:

- Specimen assessment materials and mark schemes
- Face-to-face CPD events
- Examiners' reports on each question paper
- Free access to past question papers and mark schemes via the secure website
- Direct access to the subject officer
- Free online resources <u>WJEC Digital resources</u>
- Online Examination Review

The specification, latest news and resources are available on the Geography webpage.

Aims of the Guidance for Teaching

The principal aim of the Guidance for Teaching is to support teachers in the delivery of the new WJEC A level in Geography specification and to offer guidance on the requirements of the qualification and the assessment process.

The Guidance is **not intended as a comprehensive reference**, but as support for professional teachers to develop stimulating and exciting courses tailored to the needs and skills of their own learners in their particular institutions. In addition, it must not be used instead of the specification, but must be used to support the delivery of it.

The Guidance offers assistance to teachers with regard to possible classroom activities and links to digital resources (both our own, freely available, digital materials and some from external sources) to provide ideas when planning interesting, topical and engaging lessons.

Please be aware that many of the resources mentioned in this Guidance are web-based and accessed via hyperlinks. As a result, you are advised to view this Guidance electronically.

Assessment Strategy

Assessment Objectives and their related command words

The table below illustrates how the Assessment Objectives (AOs) are divided and shows where they are also sub-divided into strands and elements. Some examples of the command words that could be used in examination papers when addressing these AOs have also been included. Furthermore, the final column includes some sample questions to give an example of how the various AOs would be addressed in an examination paper.

Assessment Objective	Strands	Elements	Example command	Example questions from Sample Assessment Materials
			words	
AO1				
Demonstrate	N/A	This AO is a	Define	Explain how earthquakes produce tsunamis. [5]
knowledge and		single	Identify	
understanding of		element.	State	Describe the demographic and economic impacts of the
places, environments,			Describe	eruption of one volcano.[[10]
concepts, processes,			Distinguish	
interactions and			Explain	
change, at a variety of			Give an example	
scales.			Outline	

AO2				
Apply knowledge and understanding in different contexts to interpret, analyse and evaluate geographical	N/A	1a – Apply knowledge and understanding in different	Analyse Compare Contrast Explain why	Analyse why the impacts of volcanic activity vary. [20] Analyse why processes associated with earthquake activity often result in hazards.[[20]
issues.		contexts to analyse geographical information and issues.		
		1b – Apply knowledge and	Suggest Interpret	Suggest one reason why the sea wall has been breached. [3]
		understanding in different contexts to		Suggest three human factors that may explain why the areas shown in Figure 5 have a high mortality risk. [9]
		interpret geographical information and issues.		Suggest the short-term responses that could be used to mitigate the consequences of changes shown in Figure 6. [10]
		1c – Apply knowledge and	Assess Discuss Justify	Describe and justify the choice of case study area used for your fieldwork investigation in physical geography. [9]
		understanding in different contexts to evaluate	Evaluate Examine To what extent	Assess the success of strategies implemented in China to manage one environmental problem associated with economic growth. [22]

		geographical information and issues.		To what extent can the damaging effects of high-pressure systems be minimised? [22]
AO3				
Use a variety of relevant quantitative, qualitative and fieldwork skills to: • investigate geographical questions and issues • interpret analyse	1 – investigate geographical questions and issues.	N/A	Calculate Describe (pattern/variations) Draw Identify Label State Select Estimate	Use Figure 1 to outline why 'managed retreat' is a positive choice for Cwm Ivy. [5] Use Figure 2 to describe the extent of coastline erosion in Wales compared to that in Scotland. [3]
 Interpret, analyse and evaluate data and evidence construct arguments and draw conclusions. 	2 – interpret, analyse and evaluate data and evidence.		Explain Compare Suggest	Using Figure 2, analyse conflicting perspectives about the use of Thornton Moor. [5] Use Figure 2 to describe the distribution of Portuguese migrants in the selected regions of Wales. Include relevant figures in your answer. [3]
	3 – construct arguments and draw conclusions.		Analyse To what extent Assess Discuss Evaluate	

Adapted from GCE Subject Level Guidance for Geography March 2015.

Command Word Glossary

The table below provides a full list of command words that could be used in future examination series, along with a definition of each.

Define	Give the precise meaning of a term, phrase or concept.		
Identify	Point out and name from a number of possibilities.		
State	Give a specific name, value or other brief answer without explanation.		
Describe	Identify distinctive features and give descriptive, factual detail. Describe		
	how		
Distinguish	Make clear the differences between two or more concepts.		
Explain	Give an account; factual detail e.g. of a process.		
Give an example	Provide accurate evidence (response given demonstrates knowledge and		
	understanding).		
Outline	Give a brief summary of the main characteristics.		
Analyse	Break down in order to bring out the essential elements or structure.		
Compare	Give a point by point identification of similarities and differences .		
Contrast	Give a point by point identification of differences only .		
Explain why	Give reasons or causes and show an understanding of <u>why</u> something has		
	occurred/ applied to resource.		
Suggest	Put forward plausible and informed ideas based on wider geographical		
	knowledge and understanding.		
Interpret	In relation to NEA and skills – bring out the meaning, explain.		
Assess	Goes beyond knowledge and understanding to weigh up the importance of		
	the subject. This means there are a number of possible		
	explanations/arguments/outcomes. The main possible		
	explanations/arguments/outcomes should be given with justification on		
Discuss	Which is/are favoured.		
DISCUSS	Goes beyond knowledge and understanding to offer a considered review		
	that includes a range of arguments or factors with more than one side of		
	identifying through description and evaluation, both positive and pogative		
	noints and reaches a conclusion from the debate		
lustify	Goes beyond knowledge and understanding to explain why the choice		
Justity	given is better than other possible ontions		
Fvaluate	Goes beyond knowledge and understanding to evaluate. Requires a		
	iudgement about the overall quality or value of the feature(s)/issue(s) in		
	terms of the strengths and limitations. Supporting evidence should be		
	clearly given. A viewpoint, after consideration of the evidence should be		
	given, with personal judgement/opinion.		
Examine	Consider an argument or concept in a way that uncovers the assumption		
	and interrelationships of the issue, and is often followed by the 'role of' or		
	'importance'.		

To what	Goes beyond knowledge and understanding to give possible explanations
extent/How far	for and against, and justify a viewpoint(s).
do you agree?	
Calculate	Ascertain by reckoning.
Draw	Draw to represent, an accurate diagram or graph.
Identify	Point out and name from a number of possibilities.
Label	Add labels to a diagram.
State	Give a specific name, value or other brief answer without explanation.
Select	Pick out the most appropriate material.
Estimate	Obtain an approximate mathematical or statistical value.

Delivering the Specification

Summary of Assessment

AS Unit 1: Changing Landscapes

Written examination: 2 hours 24% of qualification 96 marks

Section A: Changing Landscapes Choice between two themes, either Coastal or Glaciated Landscapes; two compulsory structured questions with data response Section B: Tectonic Hazards Three compulsory structured questions with data response

AS Unit 2: Changing Places Written examination: 1 hour 30 minutes 16% of qualification 64 marks

Section A: Changing Places Two compulsory structured questions with data response Section B: Fieldwork Investigation in Physical and Human Geography Three compulsory structured questions with data response on fieldwork and the learner's own fieldwork investigation

Specialised Concepts

Specialised concepts are relevant to the core and non-core content. These must include the concepts of:

- Causality
- Equilibrium
- Feedback
- Identity
- Inequality
- Interdependence
- Globalisation
- Mitigation and adaptation
- Representation
- Risk
- Resilience
- Sustainability
- Systems
- Thresholds

Integration of the specialised concepts are illustrated in the introduction to each unit within the specification.

Amplification of Content and Learning Plans

This section gives examples of planning for each of the units. The first column of each plan is taken directly from the specification. The second gives some additional elaboration of the geographical content column in the specification. The third column provides possible learning ideas, opportunities and/or resources. Other approaches and exemplar materials are equally valid and teachers are encouraged to develop their own approaches to the specification that best suits the needs of themselves, their location and the needs of their particular learners. The approaches below are designed as guidance in order to provide starting points and are neither comprehensive nor mandatory.

Additional resource links can also be viewed here

Changing Landscapes – Coastal Landscapes

Focus	Amplification of Content	Teaching/Learning Approaches and Resources
1.1.1 The operation of the	The geomorphological content of Coastal Landscapes	Construct a diagram of the coastal system
coast as a system.	is specifically framed within a systems context so that	http://worldlywise.pbworks.com/w/page/15409212/Uni
	learners should know and understand the physical	t%201%20Section%20A%20-
	landscape as a series of linked components through	%20How%20physical%20processes%20have%20creat
	which energy and material are cycled. The coastal	ed%20coastal%20landforms and identify inputs,
	system is one of inputs, outputs, stores and transfers	outputs, stores and transfers of energy and materials.
	of energy and materials . Two sub-systems can be	
	identified: the cliff sub-system and the beach sub-	See slides 3–5 – <u>http://slideplayer.com/slide/1372629/</u>
	system. The cliff sub-system has inputs of the	
	subaerial processes of weathering and the	Sketch a diagram of sediment inputs, sinks and
	atmospheric process of wind erosion; a transfer of	transport of sand and shingle in the coastal zone, and
	cliff mass movement of falls, slips and slumps and an	calculate sediment budgets (see skills exercise). This
	output of sediment at the base of the cliff which is	example of a sediment budget approach to coastal
	either deposited or is transported by marine	erosion in South Carolina usefully exemplifies the

	processes. The beach sub-system has an input of sediment from longshore drift, the cliff and offshore, a transfer of longshore drift and an output of longshore drift and destructive waves carrying sediment offshore. There are three principal supplies of sediment : rivers, cliffs and dunes (terrestrial) and the offshore zone. Of these, rivers are thought to be the most important. Cliff and dune erosion can also input large amounts of sediment and can be locally important. Sediments are also transported onshore by waves and currents from sandbanks in the offshore zone. These sandbanks are important sediment sinks. Coastal sediment cells are areas of coast usually defined by headlands within which marine processes are largely confined with limited transfer of sediment from one cell to another. The relationship between inputs and outputs is constantly changing, i.e. it is dynamic, and the system is designed to achieve an equilibrium position where inputs equal outputs. To this end, erosion, transport and deposition occur: thus the concept of dynamic equilibrium .	 application of the approach in a coastal management context: http://pubs.usgs.gov/of/2008/1206/html/processes1.html Annotate a map of coastal sediment cells in England and Wales http://www.slideshare.net/fozzie/sediment-cells-and-sources Highlight boundaries of one sediment cell determined by the topography and shape of the coastline. Examine the concept of dynamic equilibrium and the adjustment of beach sediments (slide 10) and cliffs (slide 34) to changing energy inputs http://slideplayer.com/slide/1372629/
1.1.2 Temporal variations and their influence on coastal environments.	Learners should know and understand how temporal variations in tides, currents and wave types influence coastal environments. The marine offshore system is driven by the effects of waves, tides and currents which are energy inputs. Diurnal variations:	Identify how velocities and associated processes change at different stages of the tidal cycle. Read more at <u>http://www.s-cool.co.uk/a- level/geography/coastal-processes/revise-it/wave- processes#ZuSJOTTXfR0qRwtM.99</u>

The energy represented by tidal currents is significant	
in eroding, transporting and depositing material. In	For a comparison of destructive and constructive
estuaries, the rising tide can pick up (entrain)	waves see slides 18–20 –
sediment and transport it inland. Once high tide is	http://slideplayer.com/slide/1372629/
reached, the current reverses, transporting material	
in the opposite direction. Current velocities are	This link provides a useful animation that compares
relatively low at the start and end of each cycle and at	destructive and constructive waves.
their maximum in the middle of the rising or falling	Draw diagrams of different wave types and make notes
tide. Different sized particles are, therefore, entrained	on how they influence coastal environments.
and deposited at different times and in different	
locations.	
Seasonal variations in wave types:	
Constructive waves tend to occur during the	
summer. Constructive waves are low, flat and gentle,	
with wavelengths up to 100 m and a low frequency of	
6–8 waves per minute. They are characterised by a	
relatively more powerful swash, which carries sand	
and shingle up the beach, and a relatively weaker	
backwash. Constructive waves contribute to the	
formation of beach ridges and berms.	
Destructive waves tend to occur during storms and in	
winter. Destructive waves are steep in form and	
break at a high frequency, at 13–15 waves per	
minute. They have a plunging motion that generates	
little swash and a relatively more powerful backwash;	
this transports sediment down the beach face,	
resulting in a net loss of material.	

1.1.3 Landforms and	Learners should be able to identify and differentiate	Coasts introduction $0-2:30$
landscape systems, their	between rocky coastlines (erosional) and sandy or	minutes: http://www.voutube.com/watch?v=ZWEIq03N
distinctive features and	estuarine coastlines (predominantly depositional).	Bao
distribution.	Depositional environments tend to be lower energy	
	but a further critical control is sediment supply,	For an outline of high energy and low energy coastal
	where the production and delivery of sediment	environments see slides 28–29 –
	exceeds rates of removal deposition. This fact	http://slideplayer.com/slide/1372629/
	emphasises the geographical linkages between areas	
	of erosion (cliff inputs to the coastal zone) and areas	For a comparison of high energy and low energy
	of deposition to which eroded sediments are	coastal environments of Orkney see:
	transported. High energy coastal environments are	
	characterised by erosion, high wave activity, exposure	http://www.landforms.eu/orkney/coastal%20erosion.ht
	to prevailing winds and a long fetch. Landforms	<u>m</u>
	include headlands, cliffs and wave-cut platforms (see	
	1.1.5). Low energy coastal environments are	http://www.landforms.eu/orkney/coastal%20deposition
	dominated by deposition, they are sheltered and	<u>.htm</u>
	characterised by low wave activity. Landforms include	
	beaches and spits (see 1.1.6).	Classification of coastal landscapes according to
		landscape character type. An example of a landscape
		character assessment map for north Norfolk can be
		found at: <u>www.tinyurl.com/qbfyscj</u>
		Comparisons of characteristics of rocky, sandy and
		estuarine coastal environments using GIS mapping of
		the variety of coastal (rocky, sandy and estuarine)
		ianuscapes both for and beyond the UK (see SKIIIS
		exercise).
		https://www.prcgis.com/bomo/

		NASA's Visible Earth Programme is a source of satellite photographs of coasts www.tinyurl.com/kk5cq32 http://visibleearth.nasa.gov/ Trace a 30–40 km coastline at a range of scales (1:1000 000, 1: 50 000 and 1:25 000), and comment on the influence of scale on the plan of the coastline (see skills exercise).
1.1.4 Factors affecting coastal processes and landforms.	Learners should know and understand that factors including the fetch (the distance over which the wind has blown), wave type (constructive or destructive), wave orientation , wave refraction and reflection influence coastal processes and associated landforms. Geology (both lithology and structure) can be a major factor in coastline shape and landform creation. Beach material is often made up of locally eroded rock which will condition beach characteristics, sandy and/or pebbles and gradient. Rock type influences differential weathering and mass movement as well as the rate and type of erosion (corrosion of calcareous rocks for example), cliff angle, and whether caves, arches, stacks and stumps have a propensity to be created. Often sedimentary rocks will be eroded more quickly and, dependent upon slope-foot condition, may give rise to steep or shallow	For some of the factors affecting coastal processes and landforms see: http://www.geography-fieldwork.org/coast/coastal- processes.aspx http://thebritishgeographer.weebly.com/coastal- processes.html and slides 13, 22, 23, 51–53, 60, 64 http://slideplayer.com/slide/1372629/ Calculate the maximum fetch using an atlas. Work out the maximum fetch for the following locations: Aberdeen in north-east Scotland has a fetch of km Rhossili in south-west Wales has a fetch of km Dover in south-east England has a fetch of km

	movement of slumps. Igneous rocks, such as granite,	by fetch (see skills exercise).
	erode more slowly and tend to naturally produce	
	steep sided cliffs. Geological structure incorporating	Estimate wave frequency: count the number of waves
	bedding planes, dip, folding and faulting can add	over a 10 minute period and divide the total by the
	distinctive features to coastal cliff lines such as the	number of minutes to determine the mean number of
	shape that caves take and local features such as	waves per minute (see skills exercise).
	blowholes and geos. The orientation of the geology	
	with the coastline is very relevant in conditioning	Draw a wind rose of the tabulated data to show the
	coastal landforms. If the geological trend is	prevailing wind direction (see skills exercise).
	concordant, parallel to the coast, then coves and	
	solid rock bars, a Dalmatian coastline, is created. A	Wave height and wind speed data – Stiff, P. (2007)
	discordant coastline with differential geology at right	<i>Coasts.</i> Oxon. Philip Allan Updates. ISBN 978-1-84489-
	angles to the coast will result in a coastline with bays	615-8 Activity 2, p.9.
	and headlands.	
1.1.5 Processes of coastal	Learners should be able to know and understand the	For an outline of processes and landforms of coastal
weathering, mass	subaerial processes of coastal weathering and mass	erosion see slides 38–50 and 54–72 –
movement, erosion and the	movement and processes of marine erosion.	http://slideplayer.com/slide/1372629/
characteristics and	Weathering includes physical disintegration by such	
formation of associated	processes as freeze-thaw, salt crystallisation, and	Coastal <u>processes and features</u>
landforms.	wetting and drying. Chemical decomposition includes	
	solution and carbonation. The variety of intertidal	Coastal erosion
	organic life encourages biotic weathering. Slopes in	
	the coastal zone are subject to the downslope	BBC learning clips:
	movement of material under the influence of gravity	The formation of a wave-cut platform and a stack are
	(mass movement). Mass movement varies according	illustrated.
	to the speed of movement and amount of lubrication	
	of material and takes the form of landslides , slumps	How caves, arches and stacks are formed at the
	and rock falls. Marine erosional processes include	<u>coastline.</u>
	hydraulic action, abrasion (corrasion), corrosion and	

attrition. Processes need to be linked to the formation of <u>at least two</u> landforms of coastal erosion including cliffs, headlands and bays, cave-arch-stack-	Aerial erosion also has a role to play in the formation of coastal features such as the Bullers of Buchan in Aberdeenshire.
blowholes for Wales, the UK and beyond the UK.	VIDEO – Coastal Landforms – <u>Old Harry, Dorset</u> . Part 1 VIDEO – Coastal Landforms – <u>Old Harry, Dorset.</u> Part 2
	VIDEO – Scientists use technology to study coastal erosion <u>http://www.bbc.co.uk/news/uk-15268984</u>
	Field sketches of cliff profiles. Annotate photographs in the field using appropriate apps such as Skitch, which helps with the labelling and annotation of photographs (see skills exercise).
	Rate of cliff retreat per year by rock type – Stiff, P. (2007) <i>Coasts</i> . Oxon. Philip Allan Updates. ISBN 978-1- 84489-615-8 Activity 1, p.25.
	Geospatial technologies including aerial photographs, digital images, satellite images, geographic information systems (GIS), global positioning systems (GPS), databases – use of GIS and aerial photo interpretation to measure rates of coastal
	retreat <u>http://www.arcgis.com/home/webmap/viewer.h</u> <u>tml?webmap=89f3c6777a554d01808d26b9b5856cc5</u> <u>&extent=-123.6961,47.9973,-123.0273,48.2599</u>

1.1. 6 Processes of coastal transport and deposition and the characteristics and the formation of associated landforms.	Learners should understand coastal transport processes of solution, suspension, saltation and traction and the movement of sediment by longshore drift. Deposition occurs when and where there is insufficient energy to move sediment further, and learners should understand processes of sediment sorting and flocculation. Processes need to be linked to the formation of <u>at least two</u> landforms of coastal deposition including beaches, spits, bars, tombolos and cuspate forelands for Wales, the UK and beyond the UK.	For an outline of processes and landforms of coastal deposition see slides 102–112 – <u>http://slideplayer.com/slide/1372629/</u> <u>Features formed by longshore drift are explained and</u> <u>illustrated.</u> VIDEO – Growth of Pagham spit. <u>https://www.youtube.com/watch?v=fug6fc5GqiY</u> Number and statistical calculations as applied to sample of beach pebbles (see skills exercise).
		Article covering coastal fieldwork on a beach www.thegeographeronline.net/uploads/2/6/6/2/26629 <u>356/gf551.pdf</u>
1.1.7 Aeolian, fluvial and biotic processes and the characteristics and formation of landforms in coastal environments.	Learners should know and understand that the sea and its shoreline create conditions in which different biogeographical environments develop. Some coastal environments can be found in most parts of the world, such as sand dunes and estuaries , whereas others are restricted to tropical and subtropical areas, such as coral reefs and mangrove swamps . Coastal sand dunes form as a result of both wave action and aeolian processes. Tidal flats, salt marshes and micro-features of channels and rills develop in	Formation of sand dunes <u>http://www.geography-</u> <u>site.co.uk/pages/physical/coastal/dunes.html</u> <u>https://www.youtube.com/watch?v=gKU1K8n6jYM</u> Formation of salt marshes <u>https://geographyas.info/coasts/features-of-</u> <u>deposition/</u>
	is flocculation (see 1.1.6). Coral is a polyp with the	http://geography.about.com/od/waterandice/a/coralre

	property of secreting a calcareous skeleton that remains behind when it dies. Coral reefs build up through time. Coral polyps can grow only in clear, mud-free water where the temperature does not fall below 22°C. Mangroves are a range of tree and bush species that are adapted to life in coastal swamps and estuaries in tropical waters located between mid tide and high tide marks, with pioneer species growing close to the low tide mark.	efs.htm http://www.geographyalltheway.com/myp/myp- coasts/coasts-coral-reefs.htm
1.1.8 Variations in coastal processes, coastal landforms and landscapes over different timescales.	As well as understanding the main processes of erosion and deposition in coastal environments, it is important that learners understand the timescale over which they operate. These can vary from seconds to millennia. In any landscape there are processes which operate infrequently but at high magnitude and have an instantaneous effect, for example cliff collapse during a storm event altering the cliff profile (see 1.1.5). By contrast there are high frequency, but low magnitude processes such as the slow movement of material onshore by small constructive waves occurring predominantly in the summer, or the regular removal of sediment by destructive waves during the winter resulting in seasonal changes in beach profiles (see 1.1.2). It is important that learners understand that landscapes also evolve over long timescales and are required to study the impact of either eustatic changes or isostatic changes in sea level on one	 VIDEO - Cliff collapse: Dramatic coastal erosion in Cornwall http://www.youtube.com/watch?v=ITv6gSUmTjc VIDEO - Cliff collapse captured: Saturated rock leads to this at Rock-a-Nore near Hastings http://vimeo.com/83317726 VIDEO - White cliffs of Dover fall into the sea: http://www.youtube.com/watch?v=IjBvJYCEyGk Additional details: http://www.bbc.co.uk/news/uk- england-kent-17366396 http://www.bbc.co.uk/learningzone/clips/coastlines- affected-by-sea-level-change-isostasy/4025.html This animation shows how sea level has changed in the British Isles during the last 10 000 years.

	landform such as fjords, rias or raised beaches.	<u>ml</u> This interactive map provides information of locations experiencing a rise in sea level and those experiencing a fall.
1.1.9 Coastal processes are a vital context for human activity.	Learners need to know and understand that coastal processes can have a positive impact on human activity, and are required to study <u>one example</u> . Tourism is encouraged by beautiful and dramatic coastal scenery and/or the active leisure that can be pursued at a coastline. Coastal processes can also affect human activity in a negative way, and learners are required to study <u>one example</u> . Marine erosion will cause cliff collapse, often endangering buildings. Learners need to examine <u>one management strategy</u> implemented to manage the <u>negative</u> impacts of coastal processes on human activity.	 Villages lost to coastal erosion <u>http://www.bbc.co.uk/news/in-pictures-</u>22025150 VIDEO - Cliff top Devon home going cheap But there's a catch! <u>http://www.bbc.co.uk/news/uk-</u>23252455 VIDEO - Hemsby battles coastal erosion threat: <u>http://news.sky.com/story/1263319/coastal-</u>town-battles-rising-erosion-threat VIDEO - Coastal erosion: East Coast beaches 'fast disappearing' <u>http://www.bbc.co.uk/news/uk-</u>28551480 Coastal <u>landforms and management</u> VIDEO - <u>Coastal Management types</u> Coastal protection methods - <u>comparison table</u> Bown, J. (2013) Westward Ho! A case study of coastal management. <i>Geography Review</i> 27 (2) pp.2–6

1.1.10 The impact of human	Learners should know and understand that human	VIDEO: Coastal erosion at Hallsands – causes and
activity on coastal landscape	activity can have a positive impact on coastal	effects http://www.bbc.co.uk/learningzone/clips/coastal
systems.	processes and landforms through management and	-erosion-at-hallsands-causes-and-effects/9967.html
	conservation, and are required to study <u>one example</u> ,	
	Human activity can also affect coastal processes and	
	landforms in a negative way, for example through	
	offshore dredging and the erosion of sand dunes,	
	and are required to study <u>one example</u> . Learners	
	need to examine <u>one management strategy</u>	
	implemented to manage the <u>negative</u> impacts of	
	human activity on coastal processes and landforms.	

Additional resource links can also be viewed here

C	hanging	Landsca	ipes – Gl	aciated	Land	scapes
	0 0					

Focus	Amplification of Content	Teaching/Learning Approaches and Resources
1.2.1 The operation of a	The geomorphological content of Glaciated	Construct a diagram of the glacial
glacier as a system.	Landscapes is specifically framed within a systems	system: <u>http://www.s-</u>
	context so learners should know and understand the	cool.co.uk/gcse/geography/glaciers/revise-it/glacial-
	physical landscape as a series of linked components	terminology and identify inputs, outputs, stores and
	through which energy and material are cycled.	transfers of energy and materials.
	Glaciers provide an ideal illustration of the systems	
	approach: they are part of a broader environmental	http://www.bbc.co.uk/learningzone/clips/evidence-
	system and are associated with clear inputs (e.g. the	for-global-warming-glacial-retreat/1493.html video
	accumulation of snowfall) and outputs (e.g.	clip examines the changing balance of glacial
	production of meltwater or the deposition of	advance and retreat.
	sediment). Stores hold the snow, ice, meltwater and	

debris. Transfers move the snow, ice, meltwater and	
debris through the system.	Calculation of glacier mass balance (see skills exercise)
Learners need to appreciate that the inputs to and	and
outputs from a glacier are not constant, but change	http://glaciology.ethz.ch/messnetz/massbalance.html
continually over both short and long timescales (see	
1.2.2).	Use GIS and aerial photo interpretation to calculate
The glacier system constantly adjusts to changes in	mean rates of glacial retreat (see skills exercise)
the balance between accumulation and ablation and	https://nsidc.org/glims/glaciermelt/
this is reflected in the mass balance of a glacier. If	Retreat of the Sierra de Sangra Glaciers
accumulation exceeds ablation a glacier gains mass	http://visibleearth.nasa.gov/view.php?id=87541
(positive mass balance). If there is more ablation than	
accumulation a glacier has a negative mass balance. If	Identification of whether the following statements
there is a decline in snowfall and/or increase of	illustrate positive or negative feedback:
temperature, then there will be a period of time when	
melting exceeds the input of new ice and the glacier	Decreasing ice cover will mean exposed land absorbs
will lose mass until it reaches a new equilibrium	more heat and speeds warming further (positive
between accumulation and ablation.	feedback).
Changes in mass balance (inputs vs outputs) provide	
the key link between atmospheric processes and	Enlargement of initial hollow into glacial cirque with the
glacier extent, and help explain how climate change	capacity for storing and accumulating ice, resulting in
results in a change in extent and the formation of	increased erosion (positive feedback).
related features such as end moraines. This clearly	
aligns to the specification's requirement that learners	Advance of glacier to lower altitudes, causing more of
understand how landscapes evolve as a result of	the glacier to lie in the ablation zone, increasing output
processes driven by past, present and future climate	of meltwater (negative feedback).
change.	
A systems approach subdivides a complex system	
into a series of interrelated component parts that are	
linked via transfers of mass and/or energy. A change	

	in any part of the system, for example in the operation of a particular process, can lead to changes in the whole system. Sometimes these are accelerated or enhanced as the system reacts (positive feedback), and sometimes they are slowed down or counteracted by the system (negative feedback). Changes in the broader environmental system, such as climate change, can induce a change in the state of a glacier by influencing the balances between inputs, transfers and outputs.	
1.2.2 Climate change and the glacier budget over different timescales.	Learners should know and understand that glaciers have shown periods of expansion and retreat as climate changes have shifted the net balance to either positive (colder conditions) or negative (warmer conditions). Only a brief overview of reasons for climate change over the geological timescale (Milankovitch cycle and associated glacials, interglacials and stadial periods and thresholds for change), historical timescale (Maunder Minimum and associated Little Ice Age) and summer and winter changes (seasonal variations) is required.	http://www.bbc.co.uk/learningzone/clips/causes-of- climate-change/1491.htmlOverlap with 1.2.1 above:http://www.bbc.co.uk/learningzone/clips/evidence- for-global-warming-glacial-retreat/1493.html video clip examines the changing balance of glacial advance and retreat.http://glaciology.ethz.ch/messnetz/massbalance.ht ml

123 Glacier movement	Learners need to know and understand that glaciers	https://www.voutube.com/watch?v=niTiflcAsBg
	can be classified as cold-based or warm-based	underneath a glacier
	depending on whether they are frozen to the	
	underlying bedrock or not. Cold polar glaciers tend to	http://www.coolgeography.co.uk/A-
	be cold-based, but outside of the Polar Regions most	level/AOA/Year%2012/Cold%20environs/Systems/Glaci
	glaciers are warm-based. However large glaciers can	al%20Systems.htm
	be cold-based in their upper regions and warm-based	
	near their margins when they extend across different	http://www.acegeography.com/ice-formation-and-
	climatic zones. Slow rates of accumulation and	movement.html
	ablation associated with glaciers in cold continental	
	climates result in a smaller imbalance between the	
	zone of accumulation and zone of ablation and	
	slower ice movement. Glaciers in temperate-maritime	
	climates have greater snowfall in winter and	
	experience more rapid ablation in summer, therefore	
	glacier ice moves more rapidly towards the ablation	
	zone to maintain the equilibrium slope angle. Warm-	
	based glaciers, where the ice is at a temperature	
	close to its melting point, produce large volumes of	
	meltwater that promote the operation of basal	
	processes and the formation of subglacial landforms	
	(e.g. drumlins) and glaciofluvial features (e.g. eskers).	
	Cold-based glaciers in contrast are commonly	
	thought to be frozen to their beds and associated	
	with limited landscape impacts.	
	Cold-based glaciers move mainly by internal	
	deformation. These glaciers are frozen to the bed and	
	therefore only move slowly. The ice crystals within the	
	glacier orientate themselves in the direction of ice	

movement. Movement is by the dislocation of	
individual ice crystals and not of the whole body of	
ice.	
Warm-based glaciers move mainly through basal	
sliding. If the glacier moves, this can raise the	
temperature of the base ice through pressure and	
friction. The basal ice can then melt, and this water	
helps to allow the ice to slip more easily over its bed.	
Subglacial bed deformation occurs in warm-based	
glaciers where the weight of the ice, and therefore	
pressure, causes subglacial material to deform and	
move the overlying ice.	
Surges are periods of glacier movement as the glacier	
snout advances up to a thousand times faster than	
normal. Surges are considered to be the result of a	
change in the flow pattern of subglacial meltwater	
that are not related to climate.	
Compressional flow occurs where there is a decrease	
of velocity in a downglacier direction. Extensional flow	
occurs where surface glacier velocity is increasing	
downglacier and is responsible for the development	
of crevasses.	

124 The range of glacial	Learners need to know and understand that there	Glaciers online (http://www.swisseduc.ch/glaciers/)
environments and their	are several different types of ice mass . Ice masses	provides extensive imageny from glacial environments
distribution	can be divided on the basis of their size or whether	around the world and includes a useful photoglossan
	they are land based or marine based. They can be	around the world and includes a dserdi photoglossary.
	citey are faile-based of filanine-based. They can be	
	constrained (cirque glaciers, valley glaciers, piedmont	AntarcticGiaciers.org (<u>nttp://www.antarcticgiaciers.org/</u>)
	glaciers) by valley sides or unconstrained (ice sneets,	focuses on explaining the science of Antarctic
	sea ice), in which case they flow freely over the	glaciology and contains resources relating to the
	surrounding land/sea. Regardless of their type, all ice	nature and behaviour of Antarctic glaciers and their
	sheets flow and can transform the landscape by	landscape impacts.
	erosional and depositional processes.	
	The distribution of ice masses has changed over time	BGS Observatory at Virkisjokull, Iceland
	and learners need to know and understand that the	(http://www.bgs.ac.uk/research/glacierMonitoring/hom
	maximum extent of ice sheets was reached 18 000	e.html) provides a range of resources relating to the
	years BP (the late Devensian), and compare the past	British Geological Survey's ongoing monitoring of the
	distribution of ice masses with the present-day	recession of an outlet glacier in Iceland, including
	distribution. The European Alps is an example of a	timelapse imagery and live images.
	presently glaciated landscape with topographically	
	constrained glaciers including valley glaciers and	BRITICE – The British Ice Sheet
	cirque glaciers. It illustrates both the present-day	(https://www.sheffield.ac.uk/geography/staff/clark_chris
	glacial impact on landscape and evidence of formerly	/britice) provides access to a map and GIS database of
	more extensive glaciation. It also provides extensive	the glacial landforms and features related to the last
	evidence of ongoing glacier recession. Iceland is an	British Ice Sheet, useful for exploring the larger-scale
	example of a presently glaciated landscape with both	landscape impact and landform assemblages created
	topographically unconstrained ice caps and	hy ice sheets
	topographically constrained outlet glaciers. Antarctica	
	is a presently glaciated landscape with	All About Glaciers – National Snow and ice Data Centre
	topographically unconstrained continental ico shoot	(http://psidc.org/cn/osphere/glaciers) provides
	The English Lake District and North Wales are	(<u>nup, maide.org/cryosphere/graciers</u>) provides
	avamples of formerly desisted landscape shared	iniormation about glaciers.
	examples of formerly glaciated landscape snaped	

	primarily by topographically constrained glaciers including valley glaciers and cirque glaciers. The North American Laurentian shield is an example of a formerly glaciated landscape shaped by a continental scale ice sheet. Comparison with a formerly glaciated upland landscape (e.g. the English Lake District) demonstrates the contrasting landscape impacts of valley glaciers and ice sheets referred to in the specification.	Monitoring of changing areal extent of Swiss glaciers http://glaciology.ethz.ch/messnetz/massbalance.html Ice sheets at a range of scales – table summarising their volume and extent (see skills).
1.2.5 Processes of glacial weathering, erosion and the characteristics and formation of associated landforms.	Learners need to know and understand the weathering and erosion processes operating in glacial environments. The relatively high humidity combined with relatively low temperatures oscillating above and below freezing make freeze-thaw weathering predominant: the low temperatures make chemical weathering less important. The processes of erosion can be divided into three categories: glacial abrasion, plucking and subglacial fluvial erosion. Learners need to know and understand the factors affecting glacial erosion including basal thermal regime, ice velocity, ice thickness, bedrock permeability and jointing. Processes and factors need to be linked to the formation of <u>at least two</u> erosional landforms including cirques, pyramidal peaks, arêtes, glacial troughs, ribbon lakes, hanging valleys, truncated spurs, roches moutonees, crag and tail and striations for Wales, the UK and beyond the UK.	 www.youtube.com/watch?v=mWw0abWQe00 animation of the processes BBC clips: A highland landscape is described before, during and after glaciation The key features of a glaciated valley are described using the Lochaber area of Scotland as an example The landforms found in Loch Lomond before glaciation and the effect of glaciation on the area are discussed. Animations clearly illustrate the landforms associated with glaciation, such as truncated spurs and hanging valleys This clip explains the formation of many of the landforms associated with glaciation, e.g. corries, aretes, pyramidal peaks and truncated spurs.

		Geography Advanced Topic Masters: <i>Glaciation & Periglaciation</i> . Author: Jane Knight 144pp • 978 1 844 89617 2
		OS map cross-section of Nant Ffrancon valley p.36 (see skills exercise).
		Field sketches of glacial landforms of erosion. Annotate photographs in the field using appropriate apps such as Skitch, which helps with the labelling and annotation of photographs (see skills exercise).
1.2.6 Processes of glacial and fluvioglacial transport, glacial and fluvioglacial deposition and the characteristics and formation of associated landforms.	Learners need to know and understand that transported glacial material can be classified as either supraglacial, englacial or subglacial debris. Subglacial debris is most altered during transport. Sediments transported by meltwater are distinct from sediments transported by ice. Fluvioglacial transport involves more rounding of sediments through attrition and abrasion and more sorting. Learners need to appreciate that the processes by which glaciers deposit material are complex. Ablation results in ablation till, lodgement results in lodgement till and deformation till forms by the deformation of weak rock or pre-existing till by the pressures exerted by moving ice. Learners need to recognise and understand the formation of landforms of glacial deposition including subglacially formed moraines	See http://www.coolgeography.co.uk/A- level/AQA/Year%2012/Cold%20environs/Fluvioglacial/Fl uvioglacial%20landforms.htm for the formation of sandur, eskers, kames and kame terraces. http://www.geography- site.co.uk/pages/physical/glaciers/deposit.html glacial deposition and depositional landforms https://www.youtube.com/watch?v=677PQitX7Fk drumlin formation Number and statistical calculations as applied to sample of glacial clasts (see skills exercise).

	such as drumlins and <u>at least one</u> ice-marginal moraine such as terminal, recessional, lateral or push moraines. In periods of higher temperature when ice and snowmelt occurs, fluvioglacial transport and deposition leads to the formation of ice-contact features and proglacial features. Processes need to be linked to the formation of <u>at least one</u> ice-contact feature including eskers, kames and kame terraces, and <u>at least one</u> proglacial feature including sandurs, varves, kettle holes and kettle lakes for Wales, the UK and beyond the UK.	
1.2.7 Suites of landforms within glacial landscapes.	Learners should be able to identify and differentiate between the landscapes created by valley glaciers and ice sheets . This is important as these different categories of glacier produce different landscapes. Glaciated valley landscapes are typically dominated by erosional features such as cirques and U-shaped valleys (see 1.2.5), whilst landscapes affected by ice sheets commonly include features such as extensive drumlin fields and outwash plains (see 1.2.6). A consideration of either situation provides the opportunity to consider the specific types and distinctive spatial arrangement of landforms associated with these different types of ice mass.	 BRITICE – The British Ice Sheet (https://www.sheffield.ac.uk/geography/staff/clark_chris /britice) provides access to a map and GIS database of the glacial landforms and features related to the last British Ice Sheet, useful for exploring the larger-scale landscape impact and landform assemblages created by ice sheets. Geoactive Online article on landforms of lowland glaciation in the UK can be found at: http://bishopshums.wikispaces.com/file/view/ga277.pd f Classification of glacial landscapes according to landscape character type. Comparisons of characteristics of glacial environments using GIS mapping of the variety of glacial (highland and lowland) landscapes both for and beyond the UK (see skills

		exercise).
		 Benn, D. and Evans, D.J.A. (2010) <i>Glaciers and Glaciation</i> (2nd Ed.) Hodder Arnold. ISBN: 978-0340905791 This is a compendious textbook covering this whole area in great detail. Intended primarily as a university undergraduate text, this is a good general resource and reference, but includes much more detailed information than is required at A level.
1.2.8 Periglacial processes	Learners need to know and understand periglacial	http://www.physicalgeography.net/fundamentals/10ag.
and the formation of	An important process in pariglacial process is fract.	numi perigiaciai processes and iandiorms
associated reatures.	An important process in penglacial areas is most	https://www.voutube.com/watch?v=ov/clzdK/oDl
	forming in fine grained soils. As the ice expands the	ice wedge formation
	ground above is domed up and stones get pushed to	
	the surface. On areas of low relief important	https://www.voutube.com/watch?v=q7sHLlowEc3whttp
	periglacial processes are frost heaving and thrusting.	s://www.youtube.com/watch?y=g7sHUcwEc3w_lce
	and associated periglacial landforms are ice lenses ,	wedges in Alaska's National Parks
	ice wedge polygons, patterned ground, pingos and	
	thermokarst landscape.	https://www.youtube.com/watch?v=4_mVhXYc7W4
	Frost weathering and mass movement produces	Pingos in Alaska's National Parks
	nivation hollows, blockfields, scree slopes and pro-	
	talus ramparts, but higher temperatures in summer	https://www.youtube.com/watch?v=KNQiyGNhT5Ihttps:
	may lead to solifluction, an important but slow mass	//www.youtube.com/watch?v=KNQiyGNhT5I
	movement process contributing to solifluction	Pingo formation – open system and closed system
	terraces and head deposits.	
	Periglacial action by water results in dry valleys , and	http://www.bbc.co.uk/learningzone/clips/gorges-and-
	periglacial action by wind results in loess plateaux .	dry-valleys/4708.html Dry valley formation

1.2.0 Variations in glacial	As well as upderstanding the main processes of	https://www.voutube.com/watch2v=NI5fLW/D2wdK9
nacossos dasial landforme	As well as understanding the main processes of	Varia formation
processes, glacial lanurorms	erosion and deposition in glacial environments, it is	
	Important that learners understand the timescale	
different timescales.	over which they operate. These can vary from	
	seconds to millennia.	
	In any landscape there are processes which operate	
	infrequently but at high magnitude and have an	
	instantaneous effect, for example rapid mass	
	movement processes causing changes in glacial valley	
	profiles.	
	By contrast there are landforms associated with	
	seasonal variations in fluvioglacial transport and	
	deposition. In the formation of varves , the coarser	
	sediment is deposited in summer when meltwater is	
	abundant and stream transport is active; the finer	
	sediment settles out slowly during the winter (see	
	1.2.6).	
	It is important that learners understand that	
	landscapes also evolve over long timescales and that	
	they are required to study the impact of postglacial	
	reworking of glacial denosits. Relevant	
	geomorphological processes include mass movement	
	processes (modifying valley profiles largely created by	
	processes (mouliying valley profiles largely created by	
	glacial erosion), iluvial processes (resulting in the	
	Infilling at the head of ribbon lakes), or weathering	
	processes (breaking down glacial and fluvioglacial	
	deposits). Processes need to be linked to the	
	formation of <u>at least two</u> landforms.	
	Since the last glaciation, the change to milder humid	

	temperate conditions, together with changes in base level due to isostatic adjustment, have significantly modified glacial landforms.	
1.2.10 Glacial processes are a vital context for human activity.	Learners need to know and understand that glacial processes and landforms have a major impact on people's lives, for example, glacial lake outburst floods are a major hazard in mountainous areas such as the Himalayas. Human activity can also have an impact on glacial processes or landforms, for example the extraction of sands and gravels from fluvioglacial deposits and the construction of reservoirs. Learners need to examine one management strategy used to manage either the impact of glacial processes or landforms on human activity such as glacial lake outburst floods, or to manage the impacts of human activity on glacial processes or landforms on human activity such as glacial lake outburst floods, or to manage the impacts of human activity on glacial processes or landforms such as reservoir construction? Learners also need to know and understand that conventional construction techniques used in periglacial environments alter the thermal balance of the ground leading to permafrost thaw and ground subsidence. Vegetation clearance reduces the insulation of the permafrost, resulting in the deepening of the active layer in summer as heat is transferred to the permafrost table more easily, speeding up the development of a thermokarst	http://glacierhub.org/ Provides information about current scientific research, tells stories of people who live near glaciers or who visit them, and offers accounts of the efforts of communities and organizations to address the challenges brought by glacier retreat.https://www.youtube.com/watch?v=2ltb2K6oTgo&list= PLcayrWRlfU0cxTapM-sTfMulri9zxDSpz&index=14 A short discussion of glacial lake outburst floods (GLOFs) in Manaslu Conservation Area, Nepal.http://glofs-database.org/glofshttp://glaciers.uoregon.edu/hazards.htmlhttps://www.youtube.com/watch?v=6C_TGDhc3t0 Mark Carey explains GLOFs at 4000 meters above sea level in the Quebrada Honda of Peru's Cordillera Blanca mountains.https://www.youtube.com/watch?v=BexXgQakves#t=13 Bhutan – Silent tsunami.
	landscape beyond the natural rate.	

Tectonic	Hazards
recente	i lazar as

Focus	Amplification of Content	Teaching/Learning Approaches and Resources
1.3.1 Tectonic processes	An overview of the Earth's internal structure should	Overview
and hazards.	be given so that learners have a context in which to	
	place tectonic processes. Learners should	http://www.burkemuseum.org/geo_history_wa/The%20
	understand the layered structure of the earth (inner	Restless%20Earth%20v.2.0.htm – understanding of the
	core, outer core, mantle, including the	Earth's structure and processes
	asthenosphere, and crust) and have knowledge of the	
	significant boundaries (Lehmann discontinuity	http://www.tulane.edu/~sanelson/eens1110/_ – lecture
	between inner and outer core, Gutenberg	notes of Tulane University
	discontinuity between outer core and mantle and	
	Mohorovicic discontinuity between mantle and crust).	Learners could annotate a cross-section of the Earth.
	Learners should have a knowledge of the physical	
	characteristics (thickness, composition and physical	http://openhighschoolcourses.org/mod/book/tool/print
	behaviour) of each layer. Candidates should recognise	/index.php?id=6645#ch2989 text and audio
	the difference between oceanic and continental crust.	
	The mechanisms that generate movement of tectonic	http://dlblanc.com/earth/tectonic/mechansm.php – for
	plates should be understood. This could start with	teachers
	internal heating and lead to convection currents,	
	ridge push and slab pull.	http://www.geolsoc.org.uk/Plate-Tectonics/Chap3-
	The mechanics of plate movement can be linked to	<u>Plate-Margins/Mid-plate/Hawaiian-Islands</u> – good
	the processes operating at different margins:	explanations and visuals
	diverging, converging (ocean/ocean,	
	ocean/continental and continental/continental) and	http://www.pbslearningmedia.org/resource/9a60ceac-
	conservative. These processes can also be applied to	7574-4a2c-ba64-e45e8035f4e6/life-on-fire-hot-spots/
	hot spots. Note that as the unit is about hazards, the	

focus is on the process rather than the production of	http://www.pbslearningmedia.org/resource/ess05.sci.e
specific landforms other than volcanoes.	ss.earthsys.tectonic/tectonic-plates-earthquakes-and-
Learners should have a knowledge of the distribution	volcanoes/
of earthquakes and volcanoes with an emphasis on	
their link to plate boundaries and hot spots. They	http://www.iris.edu/hq/inclass/fact-
should understand the link between earthquakes and	<u>sheet/why do earthquakes happen</u>
volcanoes and tectonic processes.	
The impact of tectonic hazards is partially dependent	http://www.decodedscience.org/the-pacific-ring-of-fire-
on the physical characteristics of earthquakes and	source-of-major-earthquakes-and-volcanic-
volcanoes. Learners should know that earthquakes	activity/26828 – the ring of fire case study
and volcanoes vary in magnitude – Mercalli and	
Richter scales for earthquakes, and Volcanic	http://www.iris.edu/hq/inclass/fact-
Explosively Index for volcanoes. The hazard profile of	<u>sheet/how often do earthquakes occur</u>
earthquakes and volcanoes can also be characterised	
by:	
 predictability – the probability of an event 	
occurring over time and space	
• the frequency – the return interval of events of	
of a certain size using the idea that the larger	
the event the less frequently it occurs	
 duration – the length of time that a hazard 	
exists, using the concept that the longer the	
hazard the severe it is likely to be	
• the speed of onset – the time difference	
between the start of the event and its peak	
 areal extent – the size of the area covered by 	
the hazard.	

1.3.2 Volcanoes, processes,	Learners should have a knowledge and	http://www.tulane.edu/~sanelson/Natural Disasters/vol
hazards and their impacts.	understanding of the characteristics of the major	<u>clandforms.htm</u>
	types of volcano including shield, composite and	
	cinder. Differences in shape, structure and	http://www.bgs.ac.uk/discoveringGeology/hazards/volc
	composition can be identified. These characteristics	anoes/eruptions.html
	can be related to the nature of different volcanic	
	eruption types. Particular reference can be made to	https://laulima.hawaii.edu/access/content/group/2c084
	explosive and effusive eruptions.	<u>cc1-8f08-442b-80e8-</u>
	The type of volcano and eruption type can be related	ed89faa22c33/book/chapter10/volcanoes.htm
	to tectonic situation.	
	Volcanic processes lead to the production of	https://www.youtube.com/watch?v=WBADmZSakAk -
	particular hazards and these can often be related to	volcanoes around the world
	the type of volcano:	
	 pyroclastic flows – superheated clouds of ash, 	https://www.youtube.com/watch?v=3Bm1L3iGnEU -
	gas and small tephra that travel at high speeds	effusive eruptions visuals
	 lava flows – rivers of molten rock that pour 	
	from an erupting vent	https://www.youtube.com/watch?v=EupnfA-
	 ash fall – fragments of rock produced when 	PDaw&list=PLkTSXWtpqL230x1i3quAeNqiDUtUfPAAs&i
	magma or rock is ejected during an explosive	<u>ndex=2</u> – explosive eruptions
	eruption	
	• ahars – a mixture of water and rock fragments	http://pubs.usgs.gov/fs/fs002-97/ – volcanic hazards
	that flows down the slopes of a volcano	
	 Jokulhlaups – sudden discharge of glacial 	<u>http://volcanoes.usgs.gov/vhp/hazards.html</u> – hazards
	meltwater	processes and impacts
	volcanic landslides – large masses of debris	
	that move rapidly down the slopes of a	http://www.decodedscience.org/jokulhlaups-glacial-
	volcano and are triggered by a variety of	<u>flash-floods-release-meltwater/491/9</u> – jokulhlaups
	processes	Tormation
	 toxic gases – gases within the magma that are 	
	released when it rises to the surface and	

pressure is released.	
Learners must study an example illustrating the risk	
and impacts of volcanic activity. When studying the	
example, there is an opportunity to incorporate	
material from 1.3.5 to provide this focus box with a	
context.	
The study of an example should be organised so that	
impacts can be discussed using a number of	
categories. The presence and importance of these	
categories will vary with the examples chosen but can	
be seen as:	
 demographic – mortality, migration, 	
population structure changes	
 economic – costs of losses 	
 social – health, infrastructure, families. 	
These impacts can be (i) primary in that they are the	
immediate and direct consequence of the event, or (ii)	
secondary in that they are indirect consequences of	
the event.	
The areal scale of the impact can be local (in the	
immediate vicinity of the event), regional (at a broader	
scale that can range in scale according to the event	
studied) or global (at a worldwide scale)	
It is recognised that detailed exemplar material for	
volcanic events may not fall within the last two	
decades but they should not be historic in character	
decades but they should not be historic in character.	

133 Farthquakes	Learners should have a knowledge and	http://cse.ssl.herkeley.edu/lessons/indiv/devis/inprogra
nrocesses bazards and their	understanding of the mechanisms that lead to	sc/QuakesEng3 html – definitions and diagrams
impacts	oarthquako ovonts. The main characteristics of	
impacts.	earthquake events. The main characteristics of	
	ear though the point within the earth at which the	http://wah.icc.purdua.adu/.hraila/adumad/wayac/M/au
	Tocus – the point within the earth at which the	nttp://web.ics.purdue.edu/~braile/edumod/waves/wav
	earthquake originates	<u>eDemo.ntm#P_S_R_L_Animations</u> – animations of
	 depth of focus – shallow, intermediate and deep focus 	different waves
	• epicentre – the point on the earth's surface	http://www.slideshare.net/tudorgeog/341-earthquake-
	vertically above the focus	hazards-1063365 – ppt
	Learners should understand the character of P and S	
	waves and how they are generated by earthquakes	http://www.sms-tsunami-warning.com/pages/seismic-
	Farthquakes and the associated wave movements	waves# VtwgIrzPwSI – overview
	produce a number of hazards including:	
	• ground shaking – the vibration of the earth	https://geogabout.wordpress.com/2015/04/25/nepal-
	during an earthquake caused by seismic	earthquake-2015/ – Nepal
	waves	
	• liquefaction – the way in which the soil liquifies	http://geogabout.blogspot.co.uk/search/label/lapan%2
	during an earthquake. The water separates	0earthguake%202011 – Sendai
	from the soil particles and rises to the surface	· · · · · · · · · · · · · · · · · · ·
	• landslides – on steep slopes the vibration	http://slideplayer.com/slide/6965720/ – structured ppt
	caused by earthquakes can trigger landslides	to organise comparison of two earthquakes
	and mudflows (sometimes linked to	
	liquefaction).	
	Learners must study an example to illustrate the risk	
	and impacts of seismic activity. When studying the	
	example, there is an opportunity to incorporate	
	material from 1.3.5 to provide this focus box with a	
	context	
	The study of an example should be organised so that	
		1

	impacts can be discussed using a number of	
	categories. The presence and importance of these	
	categories will vary with the examples chosen but can	
	he seen as:	
	 demographic – mortality migration 	
	• demographic mortality, migration,	
	 economic – costs of losses 	
	 economic - costs on osses social health infrastructure families 	
	• Social – Health, initiastructure, families.	
	impacts and direct consequence of the event or (ii)	
	secondary in that they are indirect consequences of	
	the event	
	The great scale of the impact can be local (in the	
	immediate vicinity of the event) regional (at a breader	
	scale that cap range in scale according to the event	
	studied) or global (at a worldwide scale)	
	Studied) of global (at a worldwide Scale).	
1.3.4 Human factors	Learners should understand the difference between	
affecting risk and	risk (the probability of a nazard event causing narmful	
vulnerability.	consequences), and vulnerability (the geographic	
	conditions that affect the susceptibility of a	
	community to a hazard or the impacts of a hazard).	
	There are a number of factors affecting the risk and	
	vulnerability of a place or community to tectonic	
	hazards:	
	Economic factors that can be related to the	
	wealth of the place or community. This is	
	linked to both the level of development and	
	technology. Where wealth and technology is	
	present, impacts can be managed by	
	responses such as preparation, prediction and	

mitigation	
Cosial factors such as the population dop	
Social factors such as the population defined as a second se	Sity
where more people are at risk in densely	
populated areas. Population structures c	an
contain high proportions of age and gene	er
groups that are susceptible to hazards. P	ublic
education can reduce the vulnerability by	
empowering and making the population	nore
adaptive.	
 Political factors such as good governance 	and
preparation of emergency services can re	duce
the vulnerability of a population	
Geographical factors associated with the	
location of the tectonic event can impact	unon
vulnorability. The populations and facilitie	c
scenciated with urban and rural environm	
can affect vulnerability. The time of day w	
affect the exposure of a population, as th	IS WIII
impact on the number of people in circul	ation.
Isolation will impact on access for emerge	ency
services.	
These factors can be examined with a theoretica	
focus but can also be seen in the context of the	
examples used to illustrate the impacts of volcar	oes
and earthquakes. In this form, they will have vari	able
application and each case study need not cover	all
factors nor have equal application.	

125 Decreases to testania	Ctrategies used to menore testeric becaude can be	bttp://powerbbc.co.uk/1/bi/world/poutb_poin/C1077CC.co
1.3.5 Responses to tectonic	Strategies used to manage tectonic nazaros can be	nup://news.bbc.co.uk/1/ni/wond/south_asia/6197766.s
hazards.	divided into those that attempt to predict and warn	<u>tm</u> – tsunami warning
	populations about the event, those that attempt to	
	mitigate the impacts of the event, and those that	http://www.gfdrr.org/sites/gfdrr/files/publication/GFDR
	respond to the event.	<u>R Haiti Reconstruction KnowledgeNotes 0.pdf</u> –
	Monitoring, prediction and warnings take a number of	reconstructing Haiti
	forms depending on the tectonic hazard. Learners	
	should be aware these have a varying degree of	
	accuracy and effectiveness.	
	Strategies that respond to the event can be divided	
	into short and long-term responses. These can be	
	defined as rescue, followed by rehabilitation, followed	
	by reconstruction. The hazard management cycle	
	offers a way of organising responses.	
	The range of responses used to manage tectonic	
	hazards can be studied in the context of the	
	examples used to illustrate the impact of volcanoes	
	and earthquakes. An exhaustive study of all	
	responses is not required.	

Additional resource links can also be viewed here

Changing Places

Focus	Amplification of Content	Teaching/Learning Approaches and Resources
2.1.1 Changing place; changing places – relationships and connections.	The objective of this section is to introduce learners to the concept of place (a portion of geographic space to which meaning has been given by people), and the relationships and connections between places. Place can be understood at a range of scales. It is expected that learners use their 'home' place as a starting point to studying place and compare this with <u>at least one</u> further contrasting place. A local place can be understood as a locality, neighbourhood or a small community. Learners should know and understand that the demographic, socio-economic and cultural characteristics of places are shaped by factors including shifting flows of people, resources, money and investment. Places change over time and develop layered history. This history helps to shape the identity and 'personality' of a place. The identity is also shaped by the relationship to other places at a range of scales. A place may symbolise different things for different people. Learners should explore how demographic characteristics, such as the components of population, change (natural fertility, mortality and age/sex structures) and vary within and between places and with time. Learners should acquire an understanding of how processes such as	 Place is a portion of geographic space to which meaning has been given by people. Describe how the 'home' place – a locality, neighbourhood or small community such as Salford Quays is formally/statistically represented using maps (graphical) and statistical data sources: http://www.ons.gov.uk/ons/index.html to describe census data such as population, gender, age structures and level of education. http://www.ukcrimestats.com or http://www.ukcrimestatistics.co.uk to describe crime types and levels. http://dclgapps.communities.gov.uk/imd/idmap. html to describe deprivation data and http://www.localhealth.org.uk to describe health data. http://home.rm.com/schoolfinder/ to describe school types and standards quality. http://www.rightmove.co.uk or http://www.rightmove.co.uk or http://www.rightmove.co.uk or http://www.rightmove.co.uk or http://www.teets are so expensive. http://www.theguardian.com/money /2015/dec/11/victoria-road-in-kensington-is-most-expensive-street-in-england-and-wales

globalisation, seen by the actions of MNC fast food chains, impact on the characteristics of places (operating at different scales from local to global), learners' own lives and the lives of others.	• <u>http://londonspovertyprofile.org.uk</u> Mapping inequality within urban areas: London's Poverty Profile and read Danny Dorling (2013) <i>The 32</i> <i>Stops.</i> London: Penguin Books to explore the extent and impact of inequality in London.
	Learners can make field visits and create a place audit/profile by using: <u>http://www.rgs.org/OurWork/Schools/Fieldwork+and+l</u> <u>ocal+learning/Local+learning/Fieldwork+in+the+local+a</u> <u>rea/Place+profiling.htm</u>
	Read the article Smyth, F. (2016) 'Representations of Place', <i>Geography Review.</i> 29 (4) Hodder Education.
	Working in pairs or small groups, learners make a presentation to the rest of the class about their chosen locality. It could be the local high street village or small area of a town, and include information about the history of the place, the changing demographic, socio-economic and cultural characteristics of the place, and the flows and connections between people, resources, money and investment, and ideas.
	 Places change over time and develop layered history. Use the following Curriculum Press factsheet to understand how the past helps to shape places like Manchester or OUP's Geofile on Liverpool. Geography Factsheet 267, The Changing

	 fortunes of Manchester: An Aspiring Second City', Curriculum Press, to find out more about the history of the 'Cottonopolis'. <i>Geofile 748</i> (Series 34, Issue 2) 'Liverpool – a comparison of demographics', Oxford University Press, to compare the health, housing, income, employment and education of Toxteth and Calderstones.
	Each learner or group of learners can research the process and impact of studentification or migration in a particular town/city by using:
	 https://www.youtube.com/watch?v=oC3LLbXRy Yo&feature=related a clip showing the process of studentification and how it shapes university towns/cities such as Swansea Smith, D., Sage, J. & Balsdon, S. (2014) The geographies of studentification: 'here, there and everywhere'? <i>Geography</i>, 99 (3), pp.116– 127. Article on the geography of studentification. https://www.youtube.com/watch?v=gNg51DSef e0 and https://www.youtube.com/watch?v=Kx754C kDl1s showing how migration affects towns such as Redcar, Cleveland and Watford. https://www.youtube.com/watch?v=0BHnzEJUte <u>8</u>

		 and https://www.youtube.com/watch?v=dINbQ GgVEN8 showing how foreign direct investment is changing the skyline of London. https://www.youtube.com/watch?v=Fxa0UDeU7 t0 showing how places like Dubai are rapidly changing and the causes, patterns and consequences of migration. Johnston, R., Poulson, M. & Forrest, J. (2014) The changing ethnic composition or urban neighbourhoods in England and Wales, 2001– 2011: creating nations of strangers?' <i>Geography</i>, 99 (2), pp.67–74. <i>Geofile 716</i> (Series 32, Issue 3) 'The Effect of Globalisation on Population Movements'. This discusses globalisation, migration and refers to Mexico. http://21stcenturychallenges.org/2016/01/28/e uropes-migration-crisis/ A debate about how Europe's migration crisis is affecting the UK (21st Century Challenges, RGS-IBG) and http://21stcenturychallenges.org/2015/12/ 01/integrated-britain/ a discussion on Integrated Britain (21st Century Challenges, RGS-IBG).
2.1.2 Changing place; changing places – meaning and representation.	Learners should understand that places are given meaning as a result of people's perceptions, engagement with and their attachment to the place. The geographer Yi-Fu Tuan called this people-place	Places are given meaning as a result of peoples' perceptions, identity and experiences. Identify a variety of types of people who might be found in rural areas (farmer, newcomer, established resident), and examine

bond 'a sense of place'. As places cannot speak for themselves and are socially constructed, learners	their views of what 'rural' means to them. Do the same for urban areas.
to different people. Places can evoke feelings of nostalgia, pride, hope, adventure, tranquillity or fear. Individuals have a unique view of place developed	Explore the different perspectives people have about place by using:
from their individual identity, perspective and prior experiences, mediated by their socio-cultural positioning (such as gender, ethnic origin, socio- economic grouping, race, religion). Learners should consider that places are represented in a variety of different forms both formally (statistical, geospatial and census data) and informally (popular images shown in photography, film, music, art, literature and poetry), and that there are contrasting images portrayed by and between formal and informal representations of place.	 <u>https://www.youtube.com/watch?v=Fcnm9le_Tz</u> <u>8</u> Locals discussing the London Riots and <u>https://www.youtube.com/watch?v=nEdJHA</u> <u>nG_ug</u> Gentrification in Bethnal Green. <u>http://www.westcumbriamrws.org.uk/document</u> <u>s/340-</u> <u>Final Report of the Baseline Perceptions of C</u> <u>umbria, the Lake District and its Brands (as p</u> <u>art of the Brand Management Work) February</u> <u>2013.pdf</u> Report on perceptions of the Lake District. <u>http://www.independent.co.uk/voices/comment</u> <u>/the-british-countryside-is-dying-but-do-we-</u> <u>want-to-save-it-a6854101.html</u> <u>https://www.google.co.uk/url?sa=t&rct=j&q=&es</u> <u>rc=s&source=web&cd=6&ved=0ahUKEwiEzaj03</u> <u>ZDLAhUBkRQKHVnxA1AQFgg7MAU&url=http%</u> <u>3A%2F%2Fwww.arthurrankcentre.org.uk%2Flfir</u> <u>c%2Fitem%2Fdownload%2F1559&usg=AFQjCN</u> <u>EOlyxRQswRRTfW0aoLPLZMc6PHQ&sig2=gEUI</u> <u>bxGEahdKrjaUonInnA&bvm=bv.114733917.d.d</u> <u>24&cad=rja</u> The British countryside, extracts from Hill, M.

	 (2003) Rural Settlement and The Urban Impact on the Countryside. Hodder and Stoughton. Valentine, G. (2013) 'Living with difference: proximity and encounter in urban life', <i>Geography</i>, 98 (1) pp.4–9.
	Class discussion – why do we all have different perceptions of places?
	Interview different groups of people about issues in your local area. Use local headline news stories as stimulus material. Read Chapter 5 of Oakes, S., Owen, A. and Rawlings Smith, E. (2016) <i>Changing Places</i> Sheffield: Geographical Association for ideas about how to set up an interview.
	and urban sense of place by using:
	 <u>http://www.rgs.org/OurWork/Schools/Teaching</u> <u>+resources/Key+Stage+5+resources/21st+Cent</u> <u>ury+Challenges/Escape+to+the+city.htm</u> RGS schools resources. <u>http://www.mappiness.org.uk</u> Get involved in the LSE Happiness Across Space project.
	Look for informal representations of places to compare with formal representations above, using a wider range of resources including:

		 Historical sources <u>http://www.visionofbritain.org.uk</u> Social media such as <u>https://www.pinterest.com</u> and <u>https://twitter.com</u> to link to other representations (such as TV, film, advertisements, photography, art and music) More diverse data such as the London Sound Survey <u>http://www.soundsurvey.org.uk</u>, Sounds of our shores <u>http://www.bl.uk/sounds-of-our- shores</u> and Smellscapes <u>http://researchswinger.org/smelly</u> <u>maps/</u> Interactive map or book Henshaw, V. (2014) <i>Urban Smellscapes</i> Oxon: Routledge. Develop definitions for the key concepts (place, identity, attachment, meanings, inequality, formal and informal representations).
2.1.3 Changes over time in the economic characteristics of places.	Learners need to understand how economic change in places over time can lead to structural changes in employment as shown by the Clark Fisher Model. They should know and understand the Clark Fisher Model, the application of the model to specific countries at different stages of economic development, as well as the limitations of the model. Learners should obtain knowledge of examples of external forces and factors that influence economic restructuring including changing technology and	Learners to explore the three/four stages of the Clark Fisher Model and identify examples of countries which are at each stage of the model. Suggest reasons for the decline in the primary sector and later the secondary sector in the UK by using: https://geographyiseasy.wordpress.com/2014/02/19/g cse-revision-economic-change/ Explain reasons for the decline in the primary sector in the UK:

lifestyles, government strategy and globalisation. They should also obtain knowledge of examples of the decline in primary employment in rural areas and in secondary employment in urban places, using the home area where possible. The actual content of learning will vary greatly according to examples studied. The decline in primary employment in rural areas may be attributable to the depletion of resources, cheap imports, mechanisation, social change and the value given to primary industry. The decline in secondary employment in urban places may relate to cheaper production and the growth of the secondary sector in other economies, globalisation, mechanisation and changing government attitudes and policies.	 http://www.hulldailymail.co.uk/TIDE-TURNING- FORGOTTEN-CITY-DOCKLAND/story-26773787- detail/story.html fishing. http://www.economicshelp.org/blog/6498/unca tegorized/the-decline-of-the-uk-coal-industry/ coal industry. http://www.cornishman.co.uk/Granite-s-form- ndash-china-clay-ndash-led/story-23072102- detail/story.html china clay. Learners divide a piece of paper into four columns, one for each stage of the Clark Fisher Model and in each column draw a pie chart to show the employment structure for a country at that stage. Include details of the country's key industries by using: https://www.cia.gov/library/publications/the-world- factbook/ Opportunity for learners to visit a local industrial museum including the Museum of Science and Industry in Manchester, the Ironbridge Gorge near Telford; Quarry Bank Mill at Styal near Stockport Cheshire, the Open Air Museum at Beamish Northumberland, the National Railway Museum at York and the Piece Hall Museum in Halifax West Yorkshire.

2.1.4 Economic change and social inequalities in	Learners should have an awareness of the consequences of the loss of secondary industries in	Outline the consequences of the loss of traditional industries in urban areas by using:
places.	consequences of the loss of traditional industries in urban areas including the cycle of deprivation, social exclusion, and lower pollution levels. The loss of industry is not always evenly felt across a place or region, so learners should be aware of the groups of people who are affected and the resulting social inequalities. Learners should show knowledge of a range of government policies introduced in an attempt to improve the economy of deindustrialised places including retraining, economic (local to global), environmental policies and stimulating tertiary growth and investment by foreign MNCs. This list is not exhaustive and the use of exemplar material may touch on others.	 https://www.gov.uk/government/uploads/syste m/uploads/attachment_data/file/283885/ep9- shift-to-high-value-manufacturing- implications.pdf Fothergill, S. & Gore, T. (2013) <i>The implications for employment of the shift to</i> <i>high-value manufacturing</i>. Government Report focused on UK manufacturing decline, consequence for workers and implications for public policy. http://www.theguardian.com/business/2015/oc t/27/life-after-steel-redcar-future-consett Consequences of the steelworks closed in Consett. http://www.bbc.co.uk/education/clips/zpv987h Ship building in Hartlepool and the Tyne http://www.bbc.co.uk/education/clips/zxw s34j https://www.liverpool.ac.uk/media/livacuk/publi cpolicypractice/TCPA,CHAPE,&,WRAY,Closing.th e.Gap.pdf The North-South divide. http://www.economicshelp.org/blog/14337/envi ronment/environmental-kuznets-curve/ and http://faculty.georgetown.edu/aml6/pdfs&zz ips/PalgraveEKC.pdf Environmental Kuznets curves. http://www.theguardian.com/cities/2015/feb/04

 /manchester-morrissey-the-smiths This charming Manchester: is Morrissey's city still recognisable today? https://www.youtube.com/watch?time_continue =7&v=pk7T0Ghdfso and https://www.youtube.com/watch?v=-84iahOnktl Danny Dorling discussing the persistence of growing inequalities in the UK and rising inequality in Bristol, other similar resources are available on his website http://www.dannydorling.org/ <i>Geofile Online 412</i> (Series 20, Issue 2) 'Lthan
and <u>https://www.youtube.com/watch?v=-</u> <u>84iahOnktl</u> Danny Dorling discussing the
persistence of growing inequalities in the UK
and rising inequality in Bristol, other similar
website <u>http://www.dannydorling.org/</u>
Geofile Online 412 (Series 20, Issue 2) 'Urban
and Rural deprivation in the UK'. Read and
answer the three focus questions. Compare
Figure 4 and 5 with Census 2011 maps of index of deprivation and standard mortality ratios for
London, and describe how they have changed
over the 20 year period.
Geofile 689 (Series 31, Issue 3) 'Poverty and
health – the impact of inequality'.
Geofile 695 (Series 32, Issue 1) 'Housing supply cricic in the LV/'
Gentile 697 (Series 32 Issue 1) (Links Retween
Economic Development and Social Inequalities'
 <u>http://www.ippr.org/pu</u>blications/the-state-of-
the-north-2015 How will we know whether the
'northern powerhouse' is working? IPPR North's
annual State of the North report (2015).
<u>https://www.jrf.org.uk/report/understanding-</u>

		likely-poverty-impacts-extension-right-buy- housing-association-tenantshousing-association-tenantsImpact of the 'Right to Buy', Joseph Rowntree Foundation Report.Suggest reasons for the dramatic growth of the tertiary sector (tourism) in countries such as Kenya and the Dominican Republic, and read about Kenya to understand why having an economy dependent on tourism can be a problem, by using:https://www.cia.gov/library/publications/the-world- factbook/ and http://www.telegraph.co.uk/news/worldnews/africaandi ndianocean/kenya/10328465/Nairobi-attack-The- Kenya-that-wont-be-cowed.html
2.1.5 The service economy (tertiary) and its social and economic impacts.	Learners should gain an understanding of the changing activities occurring in some central urban areas to include retailing, commercial and entertainment expansion, and their demographic and economic drivers including rising affluence and technological change. Learners should know that some central urban places experiencing re- urbanisation also experience the process of gentrification and associated social changes; this process has both positive and negative effects on the local community. Learners should understand how gentrification is changing the socio-economic	 Many large urban areas are being redeveloped with a mix of land uses including 'flagship' spaces for leisure and tourism. Learners can investigate cities such as Aberdeen, Birmingham, Cardiff, Liverpool, Paisley and Rio, by using: <u>http://aberdeeninspired.com</u> Aberdeen Inspired. <u>http://bigcityplan.birmingham.gov.uk</u> Birmingham Big City Plan. <u>https://www.cardiff.gov.uk/ENG/resident/Planning/Local-Development-</u>

characteristics of places over time as property prices rise, displacing lower-income families and small businesses. Learners should examine the complexity of the changing service economy including the continuing decline for some central urban places, out-of-town retailing and office-parks, internet shopping and central entertainment and the impacts of these changes on people's lives at a range of scales.	 <u>Plan/Examination/Pages/default.aspx</u> Cardiff Local Development Plan. <u>http://www.liverpoolvision.co.uk</u> Liverpool Vision. <u>http://www.paisley2020.org/updates.htm</u> Paisley 2020. <i>Geofile 737</i> (Series 33, Issue 3) 'The Rio de Janeiro Olympic Games – curse or blessing?', Oxford University Press. Will the games reduce inequalities in Rio?
	Learners can debate whether controversial regeneration projects should get the go-ahead. Examples include:
	 <u>http://www.liverpoolwaters.co.uk</u> £6 billion Liverpool Waters project which would alter the historic waterfront and possibly lose Liverpool its UNESCO World Heritage status. Project vision: <u>https://www.youtube.com/watch?v=GSrc</u> <u>mermOqE</u> and <i>Geofile 732</i> (Series 33, Issue 2) 'World Heritage Status – is it beneficial?', Oxford University Press. <u>http://www.paisley2021.co.uk</u> Paisley's bid for UK City of Culture in 2021. <u>http://www.theguardian.com/business/2015/fe</u> <u>b/14/battersea-nine-elms-property-</u> <u>development-housing</u> Sovereign Wealth Funds/foreign investments in London

	Gentrification and associated social changes in central urban places can be explored in places such as London and Berlin. The Guardian newspaper has a series of articles on gentrification including the following:
	 https://www.youtube.com/watch?v=gMz1x5 yF2 Q Loretta Lees TEDxBrixton. http://www.theguardian.com/cities/2016/jan/12 /gentrification-argument-protest-backlash- urban-generation-displacement Victims and beneficiaries. http://www.theguardian.com/cities/2016/feb/12 /rootless-ruled-by-landlord-class-future-young- adults-cities-home-ownership Permanent renters. http://www.theguardian.com/cities/2016/jan/28 /hackney-creatives-priced-out-london-studios- artists-gentrification Creative people priced out of Hackney.
	Learners should understand the process of urban decline and could apply this to the example of Dudley. Start by drawing a cycle of urban decline using:
	http://www.coolgeography.co.uk/A- level/AQA/Year%2013/World%20Cities/Decline/Urban Decline.htm

	Then read Weaver, R. & Holtkamp, C. (2015) 'Geographical Approaches to Understanding Urban Decline: From Evolutionary Theory to Political Economyand Back?', <i>Geography Compass</i> , 9 (5) pp.286–302 Wiley Online, and these two clips <u>https://www.youtube.com/watch?v=ZqfjleVZLOk</u> and <u>https://www.youtube.com/watch?v=w7RPikOAk0</u> Los Angeles is another city known for urban decline and associated problems <u>http://www.bbc.co.uk/education/clips/zxws3</u> <u>4j</u> and Curriculum Press Factsheet 314. The impact of regeneration in US cities. Investigate to what extent Britain's high streets (all 5400 of them!) are 'dead', by using:
	 <u>https://www.youtube.com/watch?v=vc8SFmSvAUs</u> and <u>https://www.youtube.com/watch?v=PR600</u> <u>L8sOu8</u> to understand how the increase of fast food/chain stores are affecting Britain's high street. <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6292/2081646</u> <u>.pdf</u> <i>The Portas Review</i> (2011). Curriculum Press <i>Geography Factsheet 321.</i> <i>Death of the High Street</i>? follows up on the ideas in the YouTube clips and the government

 report. Investigate whether your high street is a 'clone town'. <u>http://www.rgs.org/OurWork/Schools/Fiel dwork+and+local+learning/Local+learning/Field work+in+the+local+area/Clone+town+survey.ht m</u>
 Investigate new spaces of consumption including: <u>http://www.bbc.co.uk/education/clips/zv7vr82</u> Business parks in Scotland. <u>http://www.bbc.co.uk/education/clips/zpjs34j</u> Edge Cities in Los Angeles.

2.1.6 The 21st century knowledge economy (quaternary) and its social and economic impacts.	Learners need to know the range of services clusters found in the quaternary sector or knowledge economy including education, research, culture/creative industries, digital/IT companies, science and biotechnology. It is useful for learners to know specific examples of service clusters so as to understand the locational factors that encourage cluster growth, including proximity to universities and research institutes, government support, planning regulations and infrastructure. Learners should also understand what the impacts of guaternary industry clusters are on	Use a range of maps such as Figure 2.1 to describe the geographical distribution of the various knowledge economy clusters (education, research, culture/creative industries, digital/IT companies, science and biotechnology) in the UK. Then explain locational factors which encourage cluster growth (proximity to universities and research institutes, government support, planning regulations and infrastructure). Hawkins, H. & Harvey, D. (2010) 'The geographies of the creative industries' scale, clusters and connectivity'
	the impacts of quaternary industry clusters are on people and places, including place making and marketing, demographic change and global	the creative industries: scale, clusters and connectivity', <i>Geography</i> , 95 (1) pp.14–21.

connectivity.	Understand the development and locational factors encouraging the growth of a particular knowledge economy cluster on people and place, such as Cambridge Science Park. Develop an understanding of how it is benefiting the economy (national/local), environment (built/natural) and people (academics, scientists as well as other local groups). Develop this case study in the form of a written report. Learners could choose different clusters to investigate, then share their reports.
	 <u>http://www.ukspa.org.uk/members/csp</u> <u>http://www.cambridgesciencepark.co.uk</u> <u>http://www.independent.co.uk/news/business/a</u> nalysis-and-features/why-cambridge-is-at-the- heart-of-britains-economic-recovery- 9134717.html <u>http://www.bbc.co.uk/education/clips/zs2vr82</u>
	Investigate the extent to which Glasgow's Future Cities project, funded by the UK government innovation fund, will improve the life of its residents. <u>http://futurecity.glasgow.gov.uk</u>
	Startups have attracted investment of more than £1.47 billion to London since 2010. Read the following articles and suggest to what extent their home at Tech City (is as the resources suggest) dying. <u>http://www.balloupr.com/blog/is-london-s-tech-</u>

	city-dying/ and http://life.spectator.co.uk/2015/09/the- failure-of-londons-tech-city/
	Read about the Silicon roundabout redevelopment, how do these projects impact on the local community? <u>http://www.standard.co.uk/news/london/o</u> <u>Id-street-roundabout-redevelopment-given-go-ahead-</u> <u>after-public-back-25m-transformation-10311172.html</u>
	How is the digital tech economy diversifying and improving Britain's local economies? <u>http://www.ft.com/cms/s/0/2ff60718-</u> <u>d00d-11e5-92a1-c5e23ef99c77.html#axzz40zrR4pkr</u>

2.1.7 The rebranding process and players in rural places.	Learners need to understand how diversification in the post-productive countryside is achieved through re-imaging and regenerating rural places, and through recreation, heritage, media and event management, driven by a number of stakeholders including local groups and external agencies such as the tourist board and conservation organisations.	Terry Marsden and Paul Cloke introduced the concept of the 'post-productive' countryside. 70 per cent of UK land is used for agriculture, but only 1% of workers are in the agricultural sector. Investigate the following: Why rural rebranding is needed in the post-productive countryside, the players involved, the focus of rural rebranding projects through recreation, heritage,
	'chocolate box' village and the image of the idyllic way of life in the countryside as portrayed by the media and the reality, which can be quite different. Learners also need to be aware of the changing social profile of people who live and work in rural areas, such as	 media and event management, and whether success can be achieved, by using: The Eden Project <u>https://www.edenproject.com</u> Gloucester Services and farm shop <u>http://www.gloucesterservices.com</u>

	wealthy second home owners, retirees, the rural poor and the recent new agricultural immigrants. They need to understand the consequences of rebranding on the perceptions, actions and behaviours of these different groups of people, including those in other places who choose to relocate there.	 Dove, J. (2015) 'Adventure tourism in the Lake District: a rebranding case study'. September, 29 (1) <i>Geography Review</i>. Hodder Education. Farmer Ted's Farm Park <u>http://www.farmerteds.com/wp/</u> Glastonbury Festival <u>http://www.glastonburyfestivals.co.uk ht</u> tp://www.theguardian.com/environment/2016/j an/14/glastonbury-festival-2014-human-waste- pollution-river-whitelake http://www.originalshrewsbury.co.uk/visit/shrew sbury/history Shrewsbury the town branded as the original one-off. Outline the aims and process of rural rebranding in Priorat based on gastronomic tourism <u>http://geographyfieldwork.com/RuralRebrandi</u> <u>ng.htm</u> and Whitley Bay Curriculum Press <i>Geography</i> <i>Factsheet 304</i>. The redevelopment and rebranding of a north eastern seaside resort – Whitley Bay. Develop definitions for the key concepts of urban renewal, redevelopment, regeneration, rebranding, re- imaging, remaking, sustainability, adaptation and thresholds.
2.1.8 Rural management	Learners need to understand how to manage rural	Learners will understand ongoing and new issues (out-
and the challenges of	change and inequality in diverse communities with	migration, ageing population, housing availability,
continuity and change.	reference to examples. Rural issues that need	physical remoteness and inaccessibility, transport and

addressing include housing, transport and service provision, i.e. broadband. Learners should be aware that these issues are complex and are a result of structural changes in agriculture, as a result of political decisions, economic change and the evolution of a post-productive countryside. Learners should be able to evaluate both ongoing and new challenges in rural places. Ongoing challenges in rural places are those where regeneration/rebranding are absent or have failed or have created conflict. New challenges of managing change in some rural communities are associated with increased levels of counter-urbanisation and second home ownership, and the possible actions that can mitigate the extent of these issues.	 service provision including broadband) associated with managing rural change and inequality in diverse communities by using: http://www.telegraph.co.uk/finance/newsbysect or/retailandconsumer/12089489/Some-milk- and-how-much-for-the-whole-store-Villagers- square-up-to-rural-shop-decline.html Article on loss of services in rural areas. http://www.rsnonline.org.uk/services/rural-bus-services-being-wiped-out Decline in rural bus services. http://www.theguardian.com/uk- news/2014/jul/09/lake-district-homeowners- local-residents Article about residents being pushed out by holiday homeowners. http://www.theguardian.com/uk- news/2014/jul/09/lake-district-homeowners- local-residents Article about residents being pushed out by holiday homeowners. http://www.theguardian.com/uk- news/2014/jul/09/lake-district-homeowners- local-residents Article about residents being pushed out by holiday homeowners. http://www.theguardian.com/uk- news/2014/jul/09/lake-district-homeowners- local-residents Article about residents being pushed out by holiday homeowners. Curriculum Press Geography Factsheet 315. South Shropshire: A case of Rural Rebranding (The impact of in-migration of retired people to Shropshire).
	compared to more remote rural areas, see Cloke's 1979 model of urban-rural continuum. <u>https://www.geography-</u> <u>fieldwork.org/rural/rurality.aspx</u> The digital divide in the UK benefits some rural areas

		but not others. Investigate some of the winners and losers. Use the following websites:
		 http://www.rgs.org/OurWork/Schools/Teaching +resources/Key+Stage+5+resources/21st+Cent ury+Challenges/Digital+divide+in+the+UK.htm An introduction to the digital divide. https://www.rgs.org/NR/rdonlyres/C25A5C2C- 0246-49F9-ACD7- A542C30BE715/0/DigitalDLesson1ArticleTacklin gthedigitaldivide.pdf Tackling the digital divide. http://www.dotrural.ac.uk/wp- content/uploads/2015/08/TwoSpeedBritain 18 Aug2015Final.pdf Two-Speed Britain report from the University of Aberdeen. Learners to create a concept map of ongoing issues and new issues facing both urban and rural areas.
2.1.9 The rebranding process and players in urban places.	Learners need to know and understand how urban places can be re-imaged and regenerated through investment in sport/music stadia, cultural quarters, festivals, industrial heritage and flagship developments. There are many suitable local places that can be used as examples here, such as Cardiff Bay. Be careful with the scale of examples, a city is too big to study. Learners need to appreciate how re-imaging and regenerating urban places takes place in	Learners to learn how the re-imaging and regenerating of urban places has taken place through sport/music stadia, cultural quarters, festivals, industrial heritage and flagship developments, using examples such as Cardiff Bay, Bristol Docks, Salford Quays and London Docklands/2012 Olympics and Liverpool. • <u>http://www.s-cool.co.uk/a- level/geography/urban-profiles/revise- it/developed-country-bristols-urban-re- generation</u> Bristol.

	collaboration with external agencies including governments, corporate bodies and community groups, each of which may have their own agenda. Linked to the above, learners must also understand that the way in which the urban place has been re- imaged and regenerated impacts on the actions and behaviours of individuals, groups, businesses and institutions.	 <u>http://www.salford.gov.uk/d/milestones_v2.pdf</u> Salford Quays. <u>http://www.lddc-history.org.uk</u> The London Docklands Development Corporation 1981– 1998 and Campkin, B. (2015) <i>Remaking London:</i> <i>Decline and Regeneration in Urban Culture</i>. I.B. Tauris: London. Rebranding Liverpool (Brand artefact, strategy and essence) Curriculum Press Factsheet 273. Learners can use actor-network theory to understand the role of stakeholders/players (external agencies including governments, corporate bodies and community groups) involved in the re-imaging and regenerating of urban places, by using: <u>http://www.sagepub.com/sites/default/files/up M-</u> binaries/5222 Ritzer_Entries beginning with A f11.pdf A critical look – London Docklands Revisited. <u>http://oisd.brookes.ac.uk/breakfast_s eminars/resources/DocklandsRevisited.pdf</u>
2.1.10 Urban management and the challenges of continuity and change.	Learners need to understand that the processes of re-imaging and regenerating can affect the social and economic characteristics of urban places and may create conflicting perceptions. Conflicting perceptions may develop in different groups of people who live in	Discuss the major challenges (such as deindustrialization, depopulation, high unemployment, political disenfranchisement, crime and dereliction) faced in places where regeneration/rebranding are absent or have failed. This is more common in smaller

the urban area, who visit and work there, and who invest in property and businesses. Learners should be able to evaluate ongoing challenges in urban places where regeneration/rebranding are absent or have failed or are causing overheating.	 towns such as Hartlepool and Wolverhampton. <u>http://www.economist.com/news/britain/21587</u>799-these-days-worst-urban-decay-found-not-big-cities-small-ones-urban-ghosts Urban decay. <u>http://www.theguardian.com/cities/2015/jan/20</u>/justin-welby-britain-urban-crisis-cities-abandoned-hopeless Urban crisis. <u>http://www.theguardian.com/cities/2015/jan/19</u>/north-south-divide-widen-thinktank-data UK's north-south divide.
	 Learners need to understand that there can be issues when regeneration/rebranding causes overheating, by using: http://www.theguardian.com/cities/2015/dec/2 3/norman-fosters-cairo-redevelopment-has- locals-asking-where-do-we-fit-in Redevelopment in Cairo for investors not local people. http://blogs.spectator.co.uk/2015/10/north- london-will-be-boosted-by-hs2-but-the-north- wont-be/ HS2 for North London not for the North. http://www.standard.co.uk/news/london/antige ntrification-protesters-target-cereal-killer-cafe- and-estate-agent-in-shoreditch-a2956481.html

	 in Shoreditch. <u>http://www.theguardian.com/uk-</u> <u>news/2015/aug/16/vince-power-fand-the-last-</u> <u>stand-of-the-notting-hill-bohemians</u> The last pub in Notting Hill.
	Learners should revise subject content, in preparation for planning and writing an essay (essay planners are helpful). <u>http://www.geographypods.com/uploads/7/6/</u> <u>2/2/7622863/essay planning tool.pdf</u>

Additional resource links can also be viewed here

Books:

Cresswell, T. (2014) Place: An Introduction, 2nd Edition. Wiley-Blackwell. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470655623.html

Hill, M. (2003) Rural Settlement and The Urban Impact on the Countryside. Hodder and Stoughton.

Hill, M. (2005) Urban Settlement and Land Use. Hodder Murray: London.

Holloway, L. & Hubbard, P. (2001) *People and Place: The Extraordinary Geographies of Everyday Life.* Harlow: Prentice Hall. <u>http://www.amazon.co.uk/People-Place-Extraordinary-Geographies-Everyday/dp/0582382122</u>

Hubbard, P. & Kitchin, R. (2011) Key Thinkers on Space and Place. 2nd Edition. London: Sage Publishing.

Massey, D. (2005) For Space. London: Sage Publishing. <u>https://selforganizedseminar.files.wordpress.com/2011/07/massey-for_space.pdf</u>

Oakes, S., Owens, A & Rawlings Smith, E. (2016) *Changing Places.* Geographical Association: Sheffield.

Witherick, M. & Adams, K. (2006) Cities and Urbanisation Philip Allan Updates: Oxfordshire.

Additional Resources:

Check current issues for relevant articles in *Geography Review* (Hodder Education), *Geofile* (Oxford University Press) and *Geography Factsheets* (Curriculum Press).

Teaching the new Human Geography from 2016 Conference lecture by Dr Simon Oakes, Eduqas in four separate sections. <u>https://www.youtube.com/watch?v=-W20IX5L2xs</u>

Valuing Places – Geographical Imaginations. Geographical Association resources. http://www.geography.org.uk/projects/valuingplaces/cpdunits/geographicalimaginations

Changing Places – New A level Subject Content Overview from the Royal Geographical Society. <u>https://www.rgs.org/NR/rdonlyres/8D8D8306-</u> 0825-4FED-B183-40D384DC6DE8/0/SCO ChangingPlace ChangingPlaces.pdf

Fieldwork Opportunities

The list in Appendix C of the specification provides suggestions of fieldwork opportunities that may be carried out in relation to each theme. These suggestions are designed as guidance in order to provide starting points and are neither comprehensive nor mandatory.

Additional resources to help place and deliver fieldwork are listed below:

- Changing Landscapes Coastal Landscapes <u>http://www.geography-</u> <u>fieldwork.org/coast.aspx</u>
- Changing Landscapes Glaciated Landscapes <u>http://www.geography-</u> <u>fieldwork.org/ice.aspx</u>
- Changing Places

 <u>Counter urbanisation</u>
 <u>Deprivation 1</u> (Investigation 4)
 <u>Deprivation 2</u> (Investigation 6)
 Urban inequality and rebranding <u>http://www.geography-fieldwork.org/urban.aspx</u>
 Rural
 change <u>https://docs.google.com/document/d/1Mgg9hUgjURRX7OSsbBVlcID8cleUngj</u>
 <u>x-aNyYrC BPM/edit?usp=sharing</u>
 Rural change 2 <u>http://www.geography-fieldwork.org/rural.aspx</u>

Integrating Skills – Practical Approaches

Geographical skills in relation to both an equal weighting of quantitative and qualitative skills are required for AS and A level learners, and the list in Appendix A of the specification indicates those selected for study for all units in this specification. All the skills need to be addressed within these units but not all will apply to fieldwork. The four required days of fieldwork should contribute to learners building a holistic and balanced understanding of quantitative and qualitative skills related to fieldwork and the six-stage enquiry process.

Definitions:

- Quantitative research is "explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particular statistics)."
- Qualitative research seeks to answer questions about why and how people behave in the way that they do. It provides in-depth information about human behaviour.

Source: <u>http://www.skillsyouneed.com/learn/quantitative-and-qualitative.html</u>

Additional guidance:

Qualitative skills

- <u>RGS article</u>
- Learning to analyse qualitative data <u>online tutorial</u>

Quantitative skills

- <u>I-Use project</u>. Including 'How to' video guides and student tasks
- GA 'How to guides' <u>Conducting statistical tests in fieldwork</u>

Learners need to develop competence in using the geographical skills specified in the Geography GCE AS and A level Subject Content (December 2014), as shown in the 'Integrating geographical skills in delivery of the core themes' tables in Appendix A of the specification.

Below are some examples of tasks that can be used to integrate skills into lesson delivery.

Class exercises matched to Geographical Skills

Coastal Landscapes

1.1.1

• use of numerical data to calculate sediment budgets

Constructing accurate sediment budgets is a time consuming process which involves measurement and monitoring of the rates all the major sediment transport processes and storage zones. Complete sediment budgets are therefore relatively unusual; however this example of a sediment budget approach to coastal erosion in South Carolina usefully exemplifies the application of the approach in a coastal management context: <u>http://pubs.usgs.gov/of/2008/1206/html/processes1.html</u>

1.1.2

• measures of central tendency (mean, mode) – mean wave frequency

To estimate wave frequency, count the number of waves over a 10 minute period and divide the total by the number of minutes to determine the <u>mean</u> number of waves per minute.

1.1.3

• scale

Trace a 30–40 km coastline at a range of scales (1: 1000 000, 1: 50 000 and 1:25 000), and comment on the influence of scale on the plan of the coastline.

• landscape system identification

Classification of coastal landscapes according to landscape character type (LCT) Holmes, D. (2013) Assessing landscapes. *Geography Review* 27 (2) pp.34–36

• digital and geo-located data

Comparisons of characteristics of rocky, sandy and estuarine coastal environments using GIS mapping of the variety of coastal (rocky, sandy and estuarine) landscapes both for and beyond the UK <u>https://www.arcgis.com/home/</u>

NASA's Visible Earth Programme is a source of satellite photographs of coasts <u>www.tinyurl.com/kk5cq32</u>

http://visibleearth.nasa.gov/

1.1.4

• distance and area

Calculate the maximum fetch using an atlas. Work out the maximum fetch for the following locations:

Aberdeen in north-east Scotland has a fetch of _____ km

Rhossili in south-west Wales has a fetch of _____ km

Dover in south-east England has a fetch of _____ km

Use the formula $H = 0.36\sqrt{F}$ to calculate the maximum possible wave height at these locations, as determined by fetch.

• rose/star/radial diagrams

Draw a wind rose of the tabulated data to show the prevailing wind direction shown below:

Mean percentage frequency of winds in the British Isles											
Ν	NNE	ENE	Ш	ESE	SSE	S	SSW	WSW	W	WNW	NNW
7	5	6	7	5	8	9	9	14	15	8	7

1.1.5

• field sketches of cliff profiles

A key field skill for geomorphologists is observation. The ability to observe landforms in the field, to systematically record those observations and then apply classroom knowledge of the environment and process to explain the genesis of the forms observed is central. Producing annotated field sketches is a great way to formalise this process. Annotating photographs in the field using appropriate apps such as Skitch, which helps with the labelling and annotation of photographs, is another option (see Holmes, 2013).

Holmes, D. (2013) Fieldwork of the future. *Geography Review* 26 (4) pp.25–27

1.1.6

• sampling

Sampling of beach pebbles, including the ability to identify sources of error in data, measurement errors and misuse of data http://geographyfieldwork.com/MinimumSampleSize.htm

Article covering coastal fieldwork on a beach

www.thegeographeronline.net/uploads/2/6/6/2/26629356/gf551.pdf

See Holmes, D. (2013) Are your data reliable, accurate and valid? *Geography Review* 26 (3) pp.34–36

• data sets

Samples of beach pebbles, see Holmes, D. (2010) Beach profiles. *Geography Review* 23 (3) pp.5–7

• frequencies

Recorded frequencies of shape of beach pebbles using Power's scale shown in the table below:

Power's scale Frequency Sample of 20 beach pebbles taken from western location on Pwll Du beach		Power's scale Frequency Sample of 20 beach pebbles taken from central location on Pwll Du beach		Power's scale Frequency Sample of 20 beach pebbles taken from eastern location on Pwll Du beach	
0	0	0	0	0	0
1	0	1	0	1	0
2	8	2	4	2	0
3	11	3	6	3	0
4	1	4	8	4	7
5	0	5	2	5	9
6	0	6	0	6	4

• measures of central tendency (mode)

Identify the modal Power's scale for each of the 3 samples tabulated above

• measures of dispersion (range, standard deviation, interquartile range)

http://geographyfieldwork.com/MinimumSampleSize.htm

Smaller standard deviations reflect more clustered data. More clustered data means less extreme values. A data set with less extreme values has a more reliable mean. The standard deviation is therefore a good measure of the reliability of the mean value. The formula is as follows:

Is there an easy way to calculate it?

The Microsoft Excel programme will automatically calculate the standard deviation and mean for a set of data listed in a spreadsheet column.

Method:

- List data set in a single column
- Click on the empty cell below the last data item
- Open INSERT menu > FUNCTION > STDEV > click OK
- The standard deviation is then shown and will appear in the empty cell.
- The excel screen example below is for a data set of 3 items

💐 Microsoft Excel - Bookt			- e x
B Ele Edt Yew From	Function Arguments	2 🔀	question for help 🛛 🖬 🖉 🗙
IN SHARLAR	STDEV		R / U E E E W
SIDEV · XJ	Numbert 2005	$\mathbf{N} = \{1; 0; 2, 4\}$	
A B	Number 2		
1 1	minore		
2 8		= 3.667878588	
3 26	Estimates standard deviation based on a sample (ignores logical values and text in the	
4 (A1:A3)	sanple).		
5	the second se	and the second sec	
6	Number 1: number 1; number 2; are 1 to population and can be purple	3 30 numbers corresponding to a sample or a rs or references that contain numbers.	
7	Pilesee and a second second		
8	Fortx.is req.R = 3.667878588		
9			
10	Heb on this function	OK Cancel	
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
A + > N Sheets / Sheet	t2 / Sheet3 /	141	L HE

Pebble data set of 30 pebble long axes from Site 1 Stiges beach, Spain. Calculate the range, standard deviation and interquartile range of the sample.

Long Axis (cm)
10
9
8
8
16
12
8.5
10
12
9
13
14
10
14
17
12
6
17
9
5
10

22	7.5
23	13
24	13
25	7.5
26	15
27	12
28	8
29	22
30	16

Mean	11.20 cm
Standard Deviation	3.81 cm
Range	5 cm – 22 cm = 17 cm
Interquartile range	8.5 cm – 14 cm = 5.5 cm

Samples of beach pebbles were taken at 12 locations spread west to east along Pwll Du beach, Gower, at intervals of 25 m as shown in the table below:

Sampling point	1 (W)	2	3	4	5	6	7	8	9	10	11	12 (E)
Distance (m)	0	25	50	75	100	125	150	175	200	225	250	275
Particles < 10 mm <i>x</i> - axis (%)	3	4	12	16	9	26	42	34	60	73	71	78

i) Draw a scatter plot to show the relationship between distance (west to east) along Pwll Du beach and the % particles with *x*-axis < 10 mm size of particles

- ii) Draw a line of best fit
- iii) Analyse the statistical significance of the relationship using Spearman's Rank Correlation Coefficient
- Spearman's Rank Correlation Coefficient

This is a technique which can be used to summarise the strength and direction (negative or positive) of a relationship between two variables. The result will always be between 1 and minus 1.

Method – calculating the coefficient:

- Create a table from your data.
- Rank the two data sets. Ranking is achieved by giving the ranking '1' to the biggest value in a column, '2' to the second biggest value and so on. The smallest value in the column will get the lowest ranking. This should be done for both sets of measurements.
- Tied scores are given the mean (average) rank.
- Find the difference in the ranks (*d*): This is the difference between the ranks of the two values on each row of the table. The rank of the second value (% particles with *x*-axis < 10 mm) is subtracted from the rank of the first (sampling point).
- Square the differences (d^2) to remove negative values and then sum them ($\sum d^2$).

Distance (m)	Rank	% particles with <i>x-</i> axis < 10 mm	Rank	Difference (<i>d</i>)	Difference squared (\hat{d})
0	12	3	12	0	0
25	11	4	11	0	0
50	10	12	9	-1	1
75	9	16	8	-1	1
100	8	9	10	2	4
125	7	26	7	0	0
150	6	42	5	-1	1
175	5	34	6	1	1
200	4	60	4	0	0
225	3	73	2	-1	1
250	2	71	3	1	1
275	1	78	1	0	0
$\int d^2 = 10$					

• Calculate the coefficient (𝒫) using the formula below. The answer will always be between 1.0 (a perfect positive correlation) and −1.0 (a perfect negative correlation).

When written in mathematical notation, the Spearman Rank formula looks like this:

$$(R) = 1 - \frac{6\sum d^2}{n^3 - n}$$

Now put all these values into the formula.

• Find the value of all the d^2 values by adding up all the values in the Difference squared (d^2) column. In our example, this is 10. Multiplying this by **6** gives 60.

- Now for the bottom line of the equation. The value *n* is the number of sites at which you took measurements. In our example, this is **12**. Substituting these values into *n*³ *n* we get 1728 **12**
- We now have the formula: R = 1 (60/1716) which gives a value for R.

1 - 0.03 = 0.97

What does this *R*value of 0.97 mean?

The closer R is to +1 or -1, the stronger the likely correlation. A perfect positive correlation is +1 and a perfect negative correlation is -1. The R value of 0.97 suggests a very strong positive relationship.

A further technique is now required to test the **significance** of the relationship.

The *R* value of **0.97** must be looked up on the Spearman Rank significance table below as follows:

- Work out the 'degrees of freedom' you need to use. This is the number of pairs in your sample minus 2(n 2). In the example, it is 10(12 2).
- Now plot your result on the table.
- If it is below the line marked 5%, then it is possible your result was the product of chance and you must reject the hypothesis.
- If it is above the 0.1% significance level, then we can be 99.9% confident the correlation has not occurred by chance.
- If it is above 1%, but below 0.1%, you can say you are 99% confident.
- If it is above 5%, but below 1%, you can say you are 95% confident (i.e. statistically there is a 5% likelihood the result occurred by chance).

In the example, the value 0.97 gives a significance level of more than 0.1%. That means that you can be 99.9% certain that your hypothesis is correct.

The significance of the Spearman's Rank Correlation Coefficients and degrees of freedom.

- The fact that two variables correlate cannot prove anything only further research can actually prove that one thing affects the other.
- Data reliability is related to the size of the sample. The more data you collect, the more reliable your result.

Click <u>Spearman's Rank Significance Graph</u> for a blank copy of the significance graph.

• inferential statistics, including Chi-square

The Chi-squared test (X^2) is used to test whether there is a significant difference between data. It can only be used on data which has the following characteristics:

- i) The data must be in the form of frequencies counted in a number of groups (% cannot be used).
- ii) The total number of observations must be > 20.
- iii) The observations must be independent (i.e. one observation must not influence another).
- iv) The expected frequency in any one category must not normally be < 5.

Method – calculating X^2 :

- State the hypothesis being tested there is a significant difference between sample groups. It is convention to give a null hypothesis no significant difference between the samples.
- Tabulate the data as shown in the example below. The data being tested for significance is the 'observed' frequency and the column headed 'O'.
- Calculate the 'expected' number of frequencies that you would expect to find in the column headed 'E'.
- Calculate the statistic using the formula $X^2 = \Sigma$ (Observed Expected)² ÷ Expected
- Calculate the degrees of freedom.
- Compare the calculated figure with the critical values in the significance tables using the appropriate degrees of freedom. Read off the probability that the data frequencies you are testing could have occurred by chance.

Example (using <u>one</u> sample):

In an investigation into the size of material deposited on a beach it was noticed there were differences with increasing distance along the beach, with pebbles appearing to become smaller. X^2 can be used to test if the variations in pebble size are significant or random. The data in the table below shows the number of pebbles over 5 cm long in a quadrat at 4 sites along a beach between 2 groynes.

Beach site	Observed number of pebbles > 5 cm long
1	40
2	15
3	5
4	12

- 1. The null hypothesis (H_o) states that there is **no significant difference** in the sizes of pebbles sampled along the beach. The alternative hypothesis (H₁) is that there is a **significant difference** in the sizes of pebbles sampled along the beach.
- 2. If there is no difference in the sizes of pebbles, the sites should all have approximately the same frequency of pebbles > 5 cm.

3.	Place the	data into	a table	(see below).	
----	-----------	-----------	---------	--------------	--

	0	E	(O-E)	(O-E) ²	(O–E) ² /E
Beach site	Number of pebbles > 5 cm long	Mean number of pebbles > 5 cm long			
1	40	18	22	484	20.89
2	15	18	З	9	0.5
3	5	18	13	169	9.39
4	12	18	6	36	2
					<u>Σ</u> 38.78

- 4. Calculate the degrees of freedom (df) = number of rows -1 = (4 1) = 3
- 5. The critical values for 3 df are:0.05 (95% confidence level) = 7.820.01 (99% confidence level) = 11.34
- 6. As the calculated value of **38.78** exceeds the tabulated figure at 3 degrees of freedom at the 99% confidence (11.34), it can be stated with 99% confidence that there is a statistically significant difference in pebble size along this stretch of beach.
- 7. The next stage is to explain the result.

Example (using <u>two</u> samples):

The following figures provide data on the distribution of pebbles of different shapes on the foreshore (intertidal) and storm ridge (top of beach) zones of Pwll Du beach. Pwll Du is a shingle beach on the south-eastern coast of the Gower peninsular.

Sediment shape influences sediment movement. By using the dimensions of the 3 axes, larger beach particles can be placed in one of the 4 shape categories:

Disc – flat and round

Sphere – like a ball

Rod – long and thin

Blade – long and flat

The 3 dimensional shape of a particle influences its movement. Rod and sphere shaped particles roll more easily. Blades can roll, but not as well as rods and spheres, and they are not thrown as effectively as discs.

Pebble shape				ROW TOTAL	
	Observed	Expected	Observed	Expected	
	foreshore	foreshore	storm ridge	storm ridge	
Discs	6	23	40		46
Blades	12		31		43
Rods	29		17		46
Spheres	53		12		65
Column Total	100		100		200

For each cell, calculate the Expected value (E) by multiplying the row total by the column total and dividing your result by the overall total. For example, multiply the row total for discs (46) by the column total of pebbles sampled from the foreshore (100), and divide this figure by the total number of 200 pebbles. This gives an expected value of 23.

Pebble shape				ROW TOTAL	
	Observed	Expected	Observed	Expected	
	foreshore	foreshore	storm ridge	storm ridge	
Discs	6	23	40	23	46
Blades	12	21.5	31	21.5	43
Rods	Rods 29		17	23	46
Spheres	Spheres 53 32.5		12	32.5	65
Column Total	100		100		200

$\lambda^2 = \Sigma$ (Observed – Expected)² ÷ Expected

$$X^{2} = (6 - 23)^{2} \div 23 + (12 - 21.5)^{2} \div 21.5 + (29 - 23)^{2} \div 23 + (53 - 32.5)^{2} \div 32.5 + (40 - 23)^{2} \div 23 + (31 - 21.5)^{2} \div 21.5 + (17 - 23)^{2} \div 23 + (12 - 32.5)^{2} \div 32.5$$
$$X^{2} = 12.56 + 4.20 + 1.56 + 12.93 + 12.56 + 4.20 + 1.56 + 12.93$$
$$X^{2} = 62.5$$

Degrees of Freedom = number of rows $-1 \times \text{columns} -1 = 3 \times 1 = 3$

The tabulated figure at 3 degrees of freedom at the 99% confidence level is 11.34. As the calculated value of **62.5** is above this, it can be stated with 99% confidence that there is a statistically significant difference between the distribution of observed pebble shapes between foreshore and storm ridge.

Table: Chi-Square Probabilities

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (i.e. 0.05 on the left is 0.95 on the right).

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757

Suggest reasons for the result of the Chi-square test:

• cross-sections and long profiles

Beach transects Holmes, D. (2010) Beach profiles. *Geography Review* 23 (3) pp.5–7

1.1.7

• cross-sections and long profiles

Cross-section of sand dune *Geography Review* January 2003 Holmes, D. (2003) Investigating coastal sand dunes. *Geography Review* 16 (3) pp.16–20

1.1.8

Ordnance Survey maps (1:25 000) map interpretation of a distinctive landform indicating past sea level change

Glacial Landscapes

1.2.1

glacier mass balance

Year	Winter (metres of water equivalent)	Summer (metres of water equivalent)	Net glacier budget (metres of water equivalent)
1985	2.18	-3.38	-1.20
1986	2.45	-3.06	-0.61
1987	2.04	-4.10	
1988	2.44	-3.78	
1989	2.43	-3.34	
1990	2.60	-2.71	
1991	3.54	-3.47	
1992	1.91	-3.92	
1993	1.98	-3.21	
1994	2.39	-3.99	
1995	2.86	-3.55	
1996	2.94	-2.84	
1997	3.71	-3.08	
1998	2.76	-4.62	
1999	3.59	-2.57	
2000	3.32	-2.94	
2001	1.90	-3.47	
2002	4.02	-3.47	
2003	2.66	-4.76	
2004	2.08	-3.73	
2005	1.97	-4.42	

i) Complete the table by calculating the figures for the net glacial budget column.

ii) Present the data in the form of a line graph.

iii) Describe the trends shown by the graph.

iv) To what extent does the graph support the evidence of glacial retreat?

Use GIS and aerial photo interpretation to calculate mean rates of glacial retreat <u>https://nsidc.org/glims/glaciermelt/</u>

Retreat of the Sierra de Sangra Glaciers http://visibleearth.nasa.gov/view.php?id=87541

Monitoring of changing areal extent of Swiss glaciers <u>http://glaciology.ethz.ch/messnetz/massbalance.html</u>

- 1.2.2
- 1.2.3
- 1.2.4
- distance and area
- scale

Comparison of past and present distribution of glaciated landscapes: table summarising their volume and extent.

lce sheet	Area	Present volume	Devensian maximum
Laurentide ice sheet (North America)	10.2 – 11.3 × 10 ⁶ km ²	0	$34.8 \times 10^{6} \text{ km}^{3}$
Greenland ice sheet	$1.7 \times 10^{6} \text{km}^{2}$	$2.4 \times 10^{6} \text{ km}^{3}$	$3.5 \times 10^{6} \text{ km}^{3}$
Antarctica	$14 \times 10^{6} \text{ km}^{2}$	$30 \times 10^{6} \text{ km}^{3}$	$34 \times 10^{6} \text{ km}^{3}$

• Types of ice mass at a range of scales

Monitoring of changing area of Swiss glaciers <u>http://glaciology.ethz.ch/messnetz/massbalance.html</u>

NASA's Visible Earth Programme is a source of satellite photographs of landscapes shaped by glaciers

http://disc.sci.gsfc.nasa.gov/geomorphology/GEO_9

1.2.5

• cross-section

Geography Advanced Topic Masters: *Glaciation & Periglaciation*. Author: Jane Knight 144pp • 978 1 844 89617 2

OS map cross-section of Nant Ffrancon valley p.36

• Ordnance Survey maps

Cirque orientation analysis using OS maps and rose diagram (see below).

• field sketches of landforms of glacial erosion

A key field skill for geomorphologists is observation. The ability to observe landforms in the field, to systematically record those observations and then apply classroom knowledge of the environment and process to explain the genesis of the forms observed is central. Producing annotated field sketches is a great way to formalise this process. Annotating photographs in the field using appropriate apps such as Skitch, which helps with the labelling and annotation of photographs, is another option (see Holmes, 2013).

Holmes, D. (2013) Fieldwork of the future. *Geography Review* 26 (4) pp.25–27

1.2.6

• sampling

Sampling of glacial clasts, including the ability to identify sources of error in data, measurement errors and misuse of data <u>http://geographyfieldwork.com/MinimumSampleSize.htm</u>

• data sets

Samples of glacial clasts, see Swain, L. & Kedwards, D. (2007) Analysing glacial deposits. *Geography Review* 20 (5) pp.26–30

- frequencies
- measures of central tendency (mode)

Recorded frequencies of shape of samples of glacial clasts using Power's scale shown in the table below:

Power's scale F	requency	Power's scale F	requency	Power's scale F	Frequency
0	8	0	39	0	0
1	37	1	35	1	5
2	41	2	16	2	19
3	11	3	5	3	30
4	3	4	3	4	21
5	0	5	2	5	15
6	0	6	0	6	10

Identify the modal Power's scale for each of the 3 samples tabulated above.

• measures of dispersion (range, standard deviation, interquartile range)

Calculate the range, standard deviation and interquartile range from a sample of glacial clasts.

Smaller standard deviations reflect more clustered data. More clustered data means less extreme values. A data set with less extreme values has a more reliable mean. The standard deviation is therefore a good measure of the reliability of the mean value. The formula is as follows:

$$\sigma = \sqrt{\frac{\sum (\mathbf{x} \cdot \overline{\mathbf{x}})^{\mathbf{z}}}{\mathbf{n}}}$$

$$\sigma = \text{ standard deviation}$$

$$\sum = \text{ sum of}$$

$$\mathbf{x} = \text{ each value in the data set}$$

$$\overline{\mathbf{x}} = \text{ mean of all values in the data set}$$

$$\mathbf{n} = \text{ number of value in the data set}$$

Is there an easy way to calculate it?

The Microsoft Excel programme will automatically calculate the standard deviation and mean for a set of data listed in a spreadsheet column.

Method:

- List data set in a single column
- Click on the empty cell below the last data item
- Open INSERT menu > FUNCTION > STDEV > click OK
- The standard deviation is then shown and will appear in the empty cell.
- The excel screen example below is for a data set of 3 items

🗷 Microsoft Excel - Book	1		. 🖬 🖬 🛛
B Ele Edt Yew Pros	Function Arguments	2 🛛	question for help 🛛 🖬 🖉 🗙
D ≅ ⊟ ⊴ Q ⊕ stocy • X √	SIDEV Number1 2005	$\mathbf{M} = \{1; 0; 2, 4\}$	BIUESE
A B	Number2	Di = number	к ц
2 8 3 26 4 (M1:A3) 5	Estimates standard deviation based on a sample sample).	= 3.667878588 (generes logical values and text in the to 30 numbers corresponding to a sample of a	
7	population and can be numb	ers or references that contain numbers.	
8	Formula (equil:) = 3,467070500		
9			
10	Hep on the function	OK Cancel	
11			·
12			
13			
15		· · · · · · · · · · · · · · · · · · ·	
16			
17			
18			
19			
20			
21			
22			
23			
25			
H 4 F H\Sheet1/Sheet1	et2 / Sheet3 /	1	

Data set of 30 long axes measurements from a sample of 30 glacial clasts. Calculate the range, standard deviation and interquartile range of the sample.

Pebble number	Long Axis (cm)
1	10
2	9
3	8
4	8
5	16
6	12
7	8.5
8	10
9	12
10	9
11	13
12	14
13	10
14	14
15	17
16	12
17	6
18	17
19	9
20	5
21	10
22	7.5
23	13
24	13
25	7.5
26	15
27	12
28	8
29	22
30	16

Mean	11.20 cm
Standard Deviation	3.81 cm
Range	5 cm – 22 cm = 17 cm
Interquartile range	8.5 cm – 14 cm = 5.5 cm

Table 11 of named cirques and their orientation

Cirque	Name of cirque	Orientation
А	Craig Maesglas	NE
В	Craig Portas	Ν
С	Glaslyn	E
D	Llyn Bochlwyd	Ν
E	Llyn Cau	E
F	Llyn Coch	NW
G	Llyn Du'r Arddu	NW
Η	Llyn Gafr	NW
	Llyn Llydaw	N
J	Llyn y Gadair	Ν

Use the data in the table above to complete the rose diagram for the orientation of cirques in Wales.

Key: Number of cirques (1 to 4)

1.2.7

• landscape system identification

Classification of glacial landscapes according to landscape character type (LCT) Holmes, D. (2013) Assessing landscapes. *Geography Review* 27 (2) pp.34–36

1.2.8

Samples of scree deposits were taken at 12 locations along a transect from the top to the base of a scree shown in the table below:

Sampling point along transect	1 (Top of scree)	2	3	4	5	6	7	8	9	10	11	12 (Base of scree)
Distance (m)	0	5	10	15	20	25	30	35	40	45	50	55
Mean length of <i>x</i> -axis (cm)	13	14	22	26	19	27	42	34	60	73	71	78

i) Draw a scatter plot to show the relationship between distance (top to bottom of scree) and the mean length of *x*-axis (cm)

- ii) Draw a line of best fit
- iii) Analyse the statistical significance of the relationship using Spearman's Rank Correlation Coefficient.

The scatter graph shows the possibility of a positive correlation between the two variables and the Spearman's Rank Correlation technique should be used to see if there is indeed a correlation, and to test the strength of the relationship.

• Spearman's Rank Correlation Coefficient

A correlation can easily be drawn as a <u>scatter graph</u>, but the most precise way to compare several **pairs of data** is to use a statistical test – this establishes whether the correlation is really significant or if it could have been the result of chance alone. Spearman's Rank Correlation Coefficient is a technique which can be used to summarise the strength and direction (negative or positive) of a relationship between two variables.

The result will always be between 1 and minus 1.

Method – calculating the coefficient:

- Create a table from your data.
- Rank the two data sets. Ranking is achieved by giving the ranking '1' to the biggest value in a column, '2' to the second biggest value and so on. The smallest value in the column will get the lowest ranking. This should be done for both sets of measurements.
- Tied scores are given the mean (average) rank.
- Find the difference in the ranks (*d*): This is the difference between the ranks of the two values on each row of the table. The rank of the second value is subtracted from the rank of the first (distance).
- Square the differences (d^2) to remove negative values and then sum them ($\sum d^2$).

Distance (m)	Rank	Length of <i>x</i> -axis (cm) Rank		Difference (<i>d</i>)	Difference squared (\hat{d})
0	12	13	12	0	0
5	11	14	11	0	0
10	10	22	9	-1	1
15	9	26	8	-1	1
20	8	19	10	2	4
25	7	27	7	0	0
30	6	42	5	-1	1
35	5	34	6	1	1
40	4	60	4	0	0
45	3	73	2	-1	1
50	2	71	3	1	1
55	1	78	1	0	0
$\sum d^2 = 10$					

• Calculate the coefficient (*R*) using the formula below. The answer will always be between 1.0 (a perfect positive correlation) and –1.0 (a perfect negative correlation).

When written in mathematical notation, the Spearman Rank formula looks like this:

$$(R) = 1 - \frac{6\sum d^2}{n^3 - n}$$

Now put all these values into the formula.

- Find the value of all the d^2 values by adding up all the values in the Difference squared (d^2) column. In our example, this is 10. Multiplying this by **6** gives 60.
- Now for the bottom line of the equation. The value *n* is the number of sites at which you took measurements. In our example, this is 12. Substituting these values into *n*³ *n* we get 1728 12
- We now have the formula: R = 1 (60/1716) which gives a value for R.

1 - 0.03 = 0.97

What does this *R* value of 0.97 mean?

The closer R is to +1 or -1, the stronger the likely correlation. A perfect positive correlation is +1 and a perfect negative correlation is -1. The R value of 0.97 suggests a very strong positive relationship.

A further technique is now required to test the **significance** of the relationship.

The *R* value of **0.97** must be looked up on the Spearman Rank significance table below as follows:

- Work out the 'degrees of freedom' you need to use. This is the number of pairs in your sample minus 2 (n 2). In the example, it is 10 (12 2).
- Now plot your result on the table.
- If it is below the line marked 5%, then it is possible your result was the product of chance and you must reject the hypothesis.
- If it is above the 0.1% significance level, then we can be 99.9% confident the correlation has not occurred by chance.
- If it is above 1%, but below 0.1%, you can say you are 99% confident.
- If it is above 5%, but below 1%, you can say you are 95% confident (i.e. statistically there is a 5% likelihood the result occurred by chance).

In the example, the value 0.97 gives a significance level of more than 0.1%. That means that you can be 99.9% certain that your hypothesis is correct.

- The fact that two variables correlate cannot prove anything only further research can actually prove that one thing affects the other.
- Data reliability is related to the size of the sample. The more data you collect, the more reliable your result.

Click <u>Spearman's Rank Significance Graph</u> for a blank copy of the above significance graph.

• inferential statistics, including Chi-square

The Chi-squared test (X^2) is used to test whether there is a significant difference between data. It can only be used on data which has the following characteristics:

- i) The data must be in the form of frequencies counted in a number of groups (% cannot be used).
- ii) The total number of observations must be > 20.
- iii) The observations must be independent (i.e. one observation must not influence another).
- iv) The expected frequency in any one category must not normally be > 5.

Method – calculating X^2 :

- State the hypothesis being tested there is a significant difference between sample groups. It is convention to give a null hypothesis no significant difference between the samples.
- Tabulate the data as shown in the example below. The data being tested for significance is the 'observed' frequency and the column headed 'O'.
- Calculate the 'expected' number of frequencies that you would expect to find in the column headed 'E'.
- Calculate the statistic using the formula $X^2 = \Sigma$ (Observed Expected)² ÷ Expected
- Calculate the degrees of freedom.
- Compare the calculated figure with the critical values in the significance tables using the appropriate degrees of freedom. Read off the probability that the data frequencies you are testing could have occurred by chance.

Example (using <u>one</u> sample):

The following figures provide data on the number of cirques and their orientation.

Orientation of cirques	Number of cirques
NE	40
SE	15
SW	5
NW	12

- 1. The null hypothesis (H_o) states that there is **no significant difference** in the orientation of cirques sampled. The alternative hypothesis (H_1) is that there is a **significant difference** in the orientation of cirques.
- 2. If there is no difference in the orientation of cirques, they should all have approximately the same frequency.
- 3. Place the data into a table (see below).

	0	E	(O-E)	(O-E) ²	(O-E) ² /E
Orientation of cirques	Number of cirques	Mean number of			
		cirques			
NE	40	18	22	484	20.89
SE	15	18	3	9	0.5
SW	5	18	13	169	9.39
NW	12	18	6	36	2
<u>Σ</u> 38.78					

- 4. Calculate the degrees of freedom (df) = number of rows -1 = (4 1) = 3
- 5. The critical values for 3 df are:
 - 0.05 (95% confidence level) = 7.82
 - 0.01 99% confidence level) = 11.34
- 6. As the calculated value of **38.78** exceeds the tabulated figure at 3 degrees of freedom at the 99% confidence (11.34), it can be stated with 99% confidence that there is a statistically significant difference in the frequency of cirques and their orientation.
- 7. The next stage is to explain the result.

Example (using <u>two</u> samples):

The following figures provide data on the distribution of scree deposits of different sizes on the upper part and lower part of the scree at Mewslade. Mewslade is a dry valley on the south-western coast of the Gower peninsular.

Scree size					ROW TOTAL
(long axis cm)	Observed	Expected	Observed	Expected	
	20–24.9 m	lower scree	0–4.9 m from free upper		
	from free face		face	scree	
0–50	6	23	40		46
51–100	12		31		43
101–150	29		17		46
151–200	53		12		65
Column Total	100		100		200

For each cell, calculate the Expected value (E) by multiplying the row total by the column total and dividing your result by the overall total. For example, multiply the row total for scree particles between 0–50 cm 20–24.9 m from the free face (46) by the column total of scree particles 20–24.9 m from the free face (100), and divide this figure by the total number of scree particles (200). This gives an expected value of 23.

Scree size (long axis cm)	Observed 20–24.9 m from free face	Expected lower scree	Observed 0–4.9 m from free face	Expected upper scree	ROW TOTAL
0–50	6	23	40	23	46
51–100	12	21.5	31	21.5	43
101–150	29	23	17	23	46
151–200	53	32.5	12	32.5	65
Column Total	100		100		200

 $\lambda^2 = \Sigma$ (Observed – Expected)² ÷ Expected

$$X^{2} = (6 - 23)^{2} \div 23 + (12 - 21.5)^{2} \div 21.5 + (29 - 23)^{2} \div 23 + (53 - 32.5)^{2} \div 32.5 + (40 - 23)^{2} \div 23 + (31 - 21.5)^{2} \div 21.5 + (17 - 23)^{2} \div 23 + (12 - 32.5)^{2} \div 32.5$$
$$X^{2} = 12.56 + 4.20 + 1.56 + 12.93 + 12.56 + 4.20 + 1.56 + 12.93$$
$$X^{2} = 62.5$$

Degrees of Freedom = number of rows $-1 \times \text{columns} -1 = 3 \times 1 = 3$

The tabulated figure at 3 degrees of freedom at the 99% confidence level is 11.34. As the calculated value of **62.5** is above this, it can be stated with 99% confidence that there is a statistically significant difference between the size of scree deposits on the upper part and lower part of the scree.

Table: Chi-Square Probabilities

The areas given across the top are the areas to the right of the critical value. To look up an area on the left, subtract it from one, and then look it up (i.e. 0.05 on the left is 0.95 on the right).

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757

Suggest reasons for the result of the Chi-square test.

Spare tables re: glacial clasts below:

Orientation (°)	Frequency	Orientation (°)	Frequency	Orientation (°)	Frequency
1–30	5	1–30	4	1–30	3
31-60	10	31-60	2	31-60	3
61–90	14	61–90	3	61–90	8

91–120	11	91–1	20	11		91–120		15	
121-150	15	121-1	50	19		121-150		17	
151-180	3	151–1	80	5		151–180		8	
181-210	6	181–2	10	4		181–210		2	
211-240	2	211-2	211-240			211-240		3	
241-270	14	241-2	241-270			241-270		5	
271-300	11	271-3	271-300			271-300		12	
301-330	4	301-3	30	19		301-330		17	
331-360	5	331-3	60	15		331-360		7	
	Till sample	1		1	Till s	Till sample 2			
Clast number	Orientatio	n (°) Length of A-axis (cm)		f A-axis	Orie	Orientation (°) Length of A- axis (cm)		gth of A- ; (cm)	
1	100	100		4.8		162		3.9	
2	70	70		6.9		17		3.5	
3	95	95		5.0			7.6		
4	54		20.5		121		7.0		
5	70		22.0		126	126			
6	85		11.5		32	32		7.2	
7	227	227		6.0		32		7.2	
8	225		7.5		14		10.9		
9	232		10.5		139		3.6		
10	170		4.5		120		11.0		
11	80		7.0		156		9.6		
12	100		6.0		89		10.0		
13	121		15.5		18		4.8		

14	120	12.0	58	12.2
15	152	9.8	149	7.0
16	104	6.0	100	7.0
17	166	5.6	100	11.4
18	100	7.0	61	31.0
19	120	6.5	72	4.0
20	120	4.0	140	5.9